素数在数论中经常被用到。也是数论的基础之一。

人们一直在讨论的问题是,怎样快速找到素数?或者判断一个数是素数?

1.根号n枚举

原始暴力方法。

2.埃氏筛

每个合数会被筛质因子次数次。复杂度O(NloglogN)

3.线性筛素数

每个合数只会被它的最小质因子筛一次。

线性筛还可以筛各种函数

具体见:SIEVE 线性筛

4.Miller_Rabin

利用:二次探测,费马小定理。

二测探测:

若P是质数,那么若x^2=1 mod P,则,x=1或者P-1

证明:即x^2-1 = 0 mod P,P|(x-1)*(x+1)

由于P是质数,所以一定是在(x-1)或者(x+1)里面存在P的质因子。

所以,有P|(x-1)或者P|(x+1),所以,x=1,或者,x=-1=P-1

如果有x^2=1 mod P,但是不满足x=1或者x=P-1,那么这个P一定不是素数。

费马小定理:

对于质数P,任意整数a(a!=P) 都有,a^(P-1)=1 mod P

这个也可以作为质数的判定条件。存在一个a不满足P一定也不是质数,。

把这两个结合起来,就可以进行Miller_Robin算法了。

具体地:

1.传入一个数n,lp=n-1

再传入一个随机数a,但是一般是质数,如2,3,5,7,61,等等

2.把lp中的所有质因子2都提出来,提出来之后的数设为d,s记录2的次数。

3.令$t=a^d mod n$,如果t==1或者t==n-1那么返回true

因为,再把s都乘回去的时候,一定会得到$a^{n-1}=1 mod n$

其实s为0,也可以直接返回false,因为n一定就是一个偶数了。

4.然后不断把s往回乘,其实是平方,因为d在指数的位置。

记录平方之前的数las,之后,如果t==1而las!=1并且las!=n-1那么就返回false

(根据二次探测)

5.s乘完后,如果n是质数,那么t=1,(根据费马小定理)。否则返回false

6.是true的话,返回1多试几次。

7.输出结果。

据说试1次,误判概率为1/4,那么试4次误判的概率就是1/(4^4)很小了。

模板:

luoguP3383(用Miller_Rabin过线性筛)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=+;
int a[]={,,};
ll qm(ll x,ll y,ll mod){
ll ret=;
while(y){
if(y&) (ret*=x)%=mod;
(x*=x)%=mod;
y>>=;
}
return ret;
}
bool che(ll a,ll x){
int s=;
ll t;
ll lp=x-;
while(!(lp&)){
s++;
lp>>=;
}
t=qm(a,lp,x);
if(t==||t==x-) return true;
if(s==) return false;
ll las=t;
for(int i=;i<s;i++){
las=t;
(t*=t)%=x;
if(t==&&(las!=&&las!=x-)) return ;
}
if(t!=) return ;
return ;
}
int n,m;
bool M_R(ll n){
if(n==||n==||n==) return true;
if(n<||n%==||n%==||n%==) return false;
for(int i=;i<;i++){
ll b=a[i];
if(b!=n){
if(!che(b,n)) return false;
}
}
return true;
}
int main(){
scanf("%d%d",&n,&m);
ll x;
for(int i=;i<=m;i++){
scanf("%lld",&x);
if(x==||x==||x==||x==||x==||x==){
puts("Yes");continue;
}
if(x%==||x%==||x%==||x%==||x%==||x%==){
puts("No");continue;
}
if(M_R(x)) puts("Yes");
else puts("No");
}
return ;
} /*
Author: *Miracle*
Date: 2018/9/24 20:50:22
*/

Miller-Robin与二次探测的更多相关文章

  1. Miller Rabbin 算法—费马定理+二次探测+随机数 (讲解+例题:FZU1649 Prime number or not)

    0.引入 那年,机房里来了个新教练, 口胡鼻祖lhy 第一节课,带我们体验了暴力的神奇, 第二节课,带我们体验了随机数的玄妙, -- 那节课,便是我第一次接触到Miller Rabbin算法, 直到现 ...

  2. 【数论】Prime Time UVA - 10200 大素数 Miller Robin 模板

    题意:验证1~10000 的数 n^n+n+41 中素数的个数.每个询问给出a,b  求区间[a,b]中质数出现的比例,保留两位 题解:质数会爆到1e8 所以用miller robin , 另外一个优 ...

  3. java 解决Hash(散列)冲突的四种方法--开放定址法(线性探测,二次探测,伪随机探测)、链地址法、再哈希、建立公共溢出区

    java 解决Hash(散列)冲突的四种方法--开放定址法(线性探测,二次探测,伪随机探测).链地址法.再哈希.建立公共溢出区 标签: hashmaphashmap冲突解决冲突的方法冲突 2016-0 ...

  4. Hash二次探测

    Hash的二次探测,当hash的长度为n:插入val,当Hash[val]不为0时,选择新地址newval = val +(-) 1*1,val+(-)2*2,val+(-)(n-1)*(n-1); ...

  5. PAT 甲级 1078 Hashing (25 分)(简单,平方二次探测)

    1078 Hashing (25 分)   The task of this problem is simple: insert a sequence of distinct positive int ...

  6. Miller Robin大素数判定

    Miller Robin算法 当要判断的数过大,以至于根n的算法不可行时,可以采用这种方法来判定素数. 用于判断大于2的奇数(2和偶数需要手动判断),是概率意义上的判定,因此需要做多次来减少出错概率. ...

  7. PAT-1145(Hashing - Average Search Time)哈希表+二次探测解决冲突

    Hashing - Average Search Time PAT-1145 需要注意本题的table的容量设置 二次探测,只考虑正增量 这里计算平均查找长度的方法和书本中的不同 #include&l ...

  8. Java解决Hash(散列)冲突的四种方法--开放地址法(线性探测,二次探测,伪随机探测)、链地址法、再哈希、建立公共溢出区

    最近时间有点紧,暂时先放参考链接了,待有时间在总结一下: 查了好多,这几篇博客写的真心好,互有优缺点,大家一个一个看就会明白了: 参考 1. 先看这个明白拉链法(链地址法),这个带源码,很好看懂,只不 ...

  9. Miller Rabin算法详解

    何为Miller Rabin算法 首先看一下度娘的解释(如果你懒得读直接跳过就可以反正也没啥乱用:joy:) Miller-Rabin算法是目前主流的基于概率的素数测试算法,在构建密码安全体系中占有重 ...

随机推荐

  1. unzip/tar命令详解

    博客目录总纲首页 原文链接:https://www.cnblogs.com/zdz8207/p/3765604.html Linux下的压缩解压缩命令详解及实例 实例:压缩服务器上当前目录的内容为xx ...

  2. C++多态深入分析!

    以下分析是基于VS2010的.以后会使用G++分析看看G++如何处理多态! // polymorphic_test.cpp : 定义控制台应用程序的入口点. // /** 特别注意:实现C++多态,除 ...

  3. 输入一个URL到页面呈现其中发生的过程-------http过程详解

    在我们点击一个网址,到它能够呈现在浏览器中,展示在我们面前,这个过程中,电脑里,网络上,究竟发生了什么事情. 服务器启动监听模式 那我们就开始了,故事其实并不是从在浏览器的地址栏输入一个网址,或者我们 ...

  4. 第二阶段每日站立会议Fifth Day

    昨天继续调试手机界面,解决了Tomcat服务可以打开,但是无法连接到数据库的问题 今天做最后的准备阶段,完善卖家后台管理界面

  5. 每天学一点easyui①

    引入js和css文件 <script type="text/javascript" src="js/jquery-easyui-1.4.3/jquery.min.j ...

  6. HDU 4281 Judges' response 状压dp+多旅行商问题

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4281 Judges' response Time Limit: 2000/1000 MS (Java ...

  7. HDU 1003 最大连续子段和

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1003 Max Sum Time Limit: 2000/1000 MS (Java/Others)M ...

  8. keil c51笔记

    第一章 Keil C51开发系统基本知识 第一节 系统概述 Keil C51是美国Keil Software公司出品的51系列兼容单片机C语言软件开发系统,与汇编相比,C语言在功能上.结构性.可读性. ...

  9. 旧文备份:CANopen中SYNC的功能和使用

    SYNC是CANopen管理各节点同步数据收发的一种方法,相当于网络节拍,基于同步的PDO按照这个网络节拍来执行实时数据的收发.SYNC属于生产/消费型通讯方式,网络中有且只有一个SYNC生产者,一般 ...

  10. 1014 C语言文法定义与C程序的推导过程

    <程序> -> <外部声明> | <程序> <外部声明> <外部声明> -> <函数定义> | <声明> ...