Kubernetes之利用prometheus监控K8S集群
prometheus它是一个主动拉取的数据库,在K8S中应该展示图形的grafana数据实例化要保存下来,使用分布式文件系统加动态PV,但是在本测试环境中使用本地磁盘,安装采集数据的agent使用DaemonSet来部署,DaemonSet的特性就是在每个node上部署一个服务进程,这一切都是自动的部署。
此处只讲如何用prometheus来监控K8S集群,关于prometheus的知识参考官方文档。另外有
部署前提: 准备好所需要的文件
$ ls -l
Prometheus/prometheus#:/data/Prometheus/prometheus# ls -l
total 28
drwxr-xr-x 2 root root 4096 Jan 15 02:53 grafana
drwxr-xr-x 2 root root 4096 Jan 15 03:11 kube-state-metrics
-rw-r--r-- 1 root root 60 Jan 14 06:48 namespace.yaml
drwxr-xr-x 2 root root 4096 Jan 15 03:22 node-directory-size-metrics
drwxr-xr-x 2 root root 4096 Jan 15 03:02 node-exporter
drwxr-xr-x 2 root root 4096 Jan 15 02:55 prometheus
drwxr-xr-x 2 root root 4096 Jan 15 02:37 rbac $ ls grafana/
grafana-configmap.yaml grafana-core-deployment.yaml grafana-import-dashboards-job.yaml grafana-pvc-claim.yaml grafana-pvc-volume.yaml grafana-service.yaml $ ls prometheus/
configmap.yaml deployment.yaml prometheus-rules.yaml service.yaml
grafana和 prometheus 都是部署文件,node-exporter、kube-state-metrics、node-directory-size-metrics这三个是采集器,相当于prometheus的agent
文件准备好了,现在开始一步一步来部署:
1,,创建所需Namespace
因为prometheus 部署的所有的deploy、pod、svc都是在monitoring完成的,所以需要事先创建之。
$ cat namespace.yaml
apiVersion: v1
kind: Namespace
metadata:
name: monitoring
$ kubectl create -f namespace.yaml
namespace "monitoring" created
2,创建grafana的pv、 pvc
grafana# cat grafana-pvc-volume.yaml
kind: PersistentVolume
apiVersion: v1
metadata:
name: grafana-pv-volume
labels:
type: local
spec:
storageClassName: grafana-pv-volume
capacity:
storage: 10Gi
accessModes:
- ReadWriteOnce
persistentVolumeReclaimPolicy: Recycle
hostPath:
path: "/data/volume/grafana"
grafana# cat grafana-pvc-claim.yaml
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: grafana-pvc-volume
namespace: "monitoring"
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 5Gi
storageClassName: grafana-pv-volume
$ kubectl create -f grafana/grafana-pvc-volume.yaml -f grafana/grafana-pvc-claim.yaml
persistentvolume "grafana-pv-volume" created
persistentvolumeclaim "grafana-pvc-volume" created $ kubectl get pvc -n monitoring
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
grafana-pvc-volume Bound grafana-pv-volume 10Gi RWO grafana-pv-volume 52s
状态bound已绑定到了 grafana-pv-volume
3,创建grafana应用,这些应用都是第三方的,都会有自已的配置,通过configmap来定义
grafana# ls
grafana-configmap.yaml grafana-core-deployment.yaml grafana-import-dashboards-job.yaml grafana-pvc-claim.yaml grafana-pvc-volume.yaml grafana-service.yaml
grafana# kubectl create -f ./ #grafana目录下所有文件都创建
configmap "grafana-import-dashboards" created
deployment "grafana-core" created
job "grafana-import-dashboards" created
service "grafana" created grafana# kubectl get deployment,pod -n monitoring
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
deploy/grafana-core 1 1 1 0 1m NAME READY STATUS RESTARTS AGE
po/grafana-core-9c7f66868-7q8lx 0/1 ContainerCreating 0 1m
运行po/grafana-core 容器时会下载镜像: grafana/grafana:4.2.0
grafana创建的应用 简单的自已描述了下:
grafana-pv-volume=/data/volume/grafana =10G
grafana-pvc-volume=5G--->grafana-pv-volume
---configmap=grafana-import-dashboards
Job=grafana-import-dashboards
Deployment=grafana-core replicas: 1 containers=grafana-core mount: grafana-pvc-volume:/var
service=grafana port: 3000 = nodePort: 30161 (3000是grafana服务的默认端口)
4, 现在grafana的核心应用已部署好了,现在来部署prometheus的RBAC
prometheus/rbac# ls
grant_serviceAccount.sh prometheus_rbac.yaml
#先创建RBAC文件:
prometheus/rbac# kubectl create -f prometheus_rbac.yaml
clusterrolebinding "prometheus-k8s" created
clusterrolebinding "kube-state-metrics" created
clusterrole "kube-state-metrics" created
serviceaccount "kube-state-metrics" created
clusterrolebinding "prometheus" created
clusterrole "prometheus" created
serviceaccount "prometheus-k8s" created
prometheus/rbac#
5,创建prometheus的deloyment,service
prometheus/prometheus# ls
configmap.yaml deployment.yaml prometheus-rules.yaml service.yaml
prometheus/prometheus#
在configmap.yaml中要注意的是在1.7以后,获取cadvsion监控pod等的信息时,用的是kubelet的4194端口,
注意以下这段:这是采集cadvision信息,必须是通过kubelet的4194端口,所以Kubelet必须监听着,4194部署了cadvsion来获取pod中容器信息
prometheus/prometheus#cat configmap.yaml
# https://github.com/prometheus/prometheus/blob/master/documentation/examples/prometheus-kubernetes.yml#L37
- job_name: 'kubernetes-nodes'
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
kubernetes_sd_configs:
- role: node
relabel_configs:
- source_labels: [__address__]
regex: '(.*):10250'
replacement: '${1}:10255'
target_label: __address__
- job_name: 'kubernetes-cadvisor'
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
kubernetes_sd_configs:
- role: node
relabel_configs:
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- target_label: __address__
replacement: kubernetes.default.svc.cluster.local:443
- source_labels: [__meta_kubernetes_node_name]
regex: (.+)
target_label: __metrics_path__
replacement: /api/v1/nodes/${1}:4194/proxy/metrics # https://github.com/prometheus/prometheus/blob/master/documentation/examples/prometheus-kubernetes.yml#L79
prometheus-rules.yaml 这是它的发现规则文件
deployment.yaml service.yaml 这两个是部署的文件, deployment部署中资源限制建议放大一点
现在部署prometheus目录下所有文件:
prometheus/prometheus# kubectl create -f ./
configmap "prometheus-core" created
deployment "prometheus-core" created
configmap "prometheus-rules" created
service "prometheus" created
prometheus/prometheus# prometheus/prometheus# kubectl get deployment,pod -n monitoring
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
deploy/grafana-core 1 1 1 1 16m
deploy/prometheus-core 1 1 1 1 1m NAME READY STATUS RESTARTS AGE
po/grafana-core-9c7f66868-wm68j 1/1 Running 0 16m
po/prometheus-core-6dc6777c5b-5nc7j 1/1 Running 0 1m
prometheus应用的部署,简单描述下创建的内容:
Deployment= prometheus-core replicas: 1 containers=prometheus image: prom/prometheus:v1.7.0 containerPort: 9090(webui)
Service name: prometheus NodePort-->port: 9090 -webui
6,prometheus部署完了现在来部署它的agent,也就是采集器:
Prometheus/prometheus# ls node-directory-size-metrics/
daemonset.yaml
Prometheus/prometheus# ls kube-state-metrics/
deployment.yaml service.yaml
Prometheus/prometheus# ls node-exporter/
exporter-daemonset.yaml exporter-service.yaml
Prometheus/prometheus#
#其中两个用的是daemonset Prometheus/prometheus# kubectl create -f node-exporter/ -f kube-state-metrics/ -f node-directory-size-metrics/
daemonset "prometheus-node-exporter" created
service "prometheus-node-exporter" created
deployment "kube-state-metrics" created
service "kube-state-metrics" created
daemonset "node-directory-size-metrics" created
Prometheus/prometheus# Prometheus/prometheus# kubectl get deploy,pod,svc -n monitoring
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
deploy/grafana-core 1 1 1 1 26m
deploy/kube-state-metrics 2 2 2 2 1m
deploy/prometheus-core 1 1 1 1 11m NAME READY STATUS RESTARTS AGE
po/grafana-core-9c7f66868-wm68j 1/1 Running 0 26m
po/kube-state-metrics-694fdcf55f-bqcp8 1/1 Running 0 1m
po/kube-state-metrics-694fdcf55f-nnqqd 1/1 Running 0 1m
po/node-directory-size-metrics-n9wx7 2/2 Running 0 1m
po/node-directory-size-metrics-ppscw 2/2 Running 0 1m
po/prometheus-core-6dc6777c5b-5nc7j 1/1 Running 0 11m
po/prometheus-node-exporter-kchmb 1/1 Running 0 1m
po/prometheus-node-exporter-lks5m 1/1 Running 0 1m NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/grafana NodePort 10.254.231.25 <none> 3000:30161/TCP 26m
svc/kube-state-metrics ClusterIP 10.254.156.51 <none> 8080/TCP 1m
svc/prometheus NodePort 10.254.239.90 <none> 9090:37318/TCP 10m
svc/prometheus-node-exporter ClusterIP None <none> 9100/TCP 1m
Prometheus/prometheus# --------
Prometheus/prometheus# kubectl get pod -o wide -n monitoring
NAME READY STATUS RESTARTS AGE IP NODE
prometheus-node-exporter-kchmb 1/1 Running 0 4m 10.3.1.16 10.3.1.16
prometheus-node-exporter-lks5m 1/1 Running 0 4m 10.3.1.17 10.3.1.17 #这两个是exporter,用的是daemonset 分别在这两个node上运行了。这样就可以采集到所有数据了。
如上部署完成,以下是用自已的话简单描述下:
node-exporter/exporter-daemonset.yaml 文件:
DaemonSet=prometheus-node-exporter
containers: name: prometheus-node-exporter image: prom/node-exporter:v0.14.0
containerPort: 9100 hostPort: 9100 hostNetwork: true #它用的是主机的9100端口
Prometheus/prometheus/node-exporter# kubectl get daemonset,pod -n monitoring
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
ds/node-directory-size-metrics 2 2 2 2 2 <none> 16h
ds/prometheus-node-exporter 2 2 2 2 2 <none> 16h
因为它是daemonset,所以相应的也会运行着两个Pod: prometheus-node-exporter Service=prometheus-node-exporter clusterIP: None port: 9100 type: ClusterIP #它没有clusterIP
# kubectl get service -n monitoring
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
prometheus-node-exporter ClusterIP None <none> 9100/TCP 16h
kube-state-metrics/deployment.yaml 文件:
Deployment=kube-state-metrics replicas: 2 containers-->name: kube-state-metrics image: gcr.io/google_containers/kube-state-metrics:v0.5.0
containerPort: 8080
Service name: kube-state-metrics port: 8080 #没有映射
#kubectl get deployment,pod,svc -n monitoring
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
deploy/kube-state-metrics 2 2 2 2 16h NAME READY STATUS RESTARTS AGE
po/kube-state-metrics-694fdcf55f-2mmd5 1/1 Running 0 11h
po/kube-state-metrics-694fdcf55f-bqcp8 1/1 Running 0 16h NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/kube-state-metrics ClusterIP 10.254.156.51 <none> 8080/TCP 16h
node-directory-size-metrics/daemonset.yaml 文件:
#因为是daemonset,所以未定义replicas数量,直接运行在每个node之上,但是它没有创建service
DaemonSet : name: node-directory-size-metrics
containers-->name: read-du image: giantswarm/tiny-tools mountPath: /mnt/var mountPath: /tmp
containers--> name: caddy image: dockermuenster/caddy:0.9.3 containerPort: 9102
mountPath: /var/www hostPath /var
kubectl get daemonset,pod,svc -n monitoring
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
ds/node-directory-size-metrics 2 2 2 2 2 <none> 16h NAME READY STATUS RESTARTS AGE
po/node-directory-size-metrics-n9wx7 2/2 Running 0 16h
po/node-directory-size-metrics-ppscw 2/2 Running 0 16h NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
没有node-directory-size-metrics的service
到此 prometheus算是部署完成了,最后来看下它暴露的端口:
Prometheus/prometheus# kubectl get svc -o wide -n monitoring
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR
grafana NodePort 10.254.231.25 <none> 3000:30161/TCP 31m app=grafana,component=core
kube-state-metrics ClusterIP 10.254.156.51 <none> 8080/TCP 6m app=kube-state-metrics
prometheus NodePort 10.254.239.90 <none> 9090:37318/TCP 16m app=prometheus,component=core
prometheus-node-exporter ClusterIP None <none> 9100/TCP 6m app=prometheus,component=node-exporter
Prometheus/prometheus#
7,访问、使用prometheus
如上可以看到grafana的端口号是30161,NodeIP:30161 就可以打开grafana,默认admin/admin
登录后,添加数据源:
添加Prometheus的数据源:
将Prometheus的作为数据源的相关参数如下图所示:
添加完后,导入模板文件:
部署完成。
Kubernetes之利用prometheus监控K8S集群的更多相关文章
- 基于prometheus监控k8s集群
本文建立在你已经会安装prometheus服务的基础之上,如果你还不会安装,请参考:prometheus多维度监控容器 如果你还没有安装库k8s集群,情参考: 从零开始搭建基于calico的kuben ...
- Prometheus 监控K8S集群资源监控
Prometheus 监控K8S集群中Pod 目前cAdvisor集成到了kubelet组件内,可以在kubernetes集群中每个启动了kubelet的节点使用cAdvisor提供的metrics接 ...
- 如何用prometheus监控k8s集群中业务pod的metrics
一般,我们从网上看到的帖子和资料, 都是用prometheus监控k8s的各项资源, 如api server, namespace, pod, node等. 那如果是自己的业务pod上的自定义metr ...
- 如何使用helm优雅安装prometheus-operator,并监控k8s集群微服务
前言:随着云原生概念盛行,对于容器.服务.节点以及集群的监控变得越来越重要.Prometheus 作为 Kubernetes 监控的事实标准,有着强大的功能和良好的生态.但是它不支持分布式,不支持数据 ...
- Prometheus 监控 Redis 集群的正确姿势
Prometheus 监控Redis的正确姿势(redis集群) Prometheus 监控 Redis cluster,其实套路都是一样的,使用 exporter. exporter 负责采集指标, ...
- shell脚本监控k8s集群job状态,若出现error通过触发阿里云的进程监控报警
#!/bin/bash while [ 1 ] do job_error_no=`kubectl get pod -n weifeng |grep -i "job"|grep -c ...
- Kubernetes 学习3 kubeadm初始化k8s集群
一.k8s集群 1.k8s整体架构图 2.k8s网络架构图 二.基于kubeadm安装k8s步骤 1.master,nodes:安装kubelet,kubeadm,docker 2.master: k ...
- Prometheus神器之监控K8s集群
Prometheus 简介 Prometheus是SoundCloud开源的一款开源软件.它的实现参考了Google内部的监控实现,与源自Google的Kubernetes结合起来非常合适.另外相比i ...
- Prometheus监控elasticsearch集群(以elasticsearch-6.4.2版本为例)
部署elasticsearch集群,配置文件可"浓缩"为以下: cluster.name: es_cluster node.name: node1 path.data: /app/ ...
随机推荐
- CS小分队第二阶段冲刺站立会议(5月31日)
昨日成果:查找相关C#资料,清楚一些bug 遇到问题:系统获取的图标分辨率太低,网上找来的获取图标的代码看不太懂 今日计划:完善获取文件图标功能,并且能够删除获取的图标文件
- css3学习笔记一
首先界面是二维的但也可以有三维的效果.先了解浏览器兼容性问题,火狐加前缀(-moz-)IE加(-MF-)谷歌加(-webkit),简单介绍css3的几个属性. 对于背景来说如果是单纯着一种颜色可以会单 ...
- Java文件写入时是否覆盖
这个是和服务器读数据结合着来的,是向服务器文件写数据,这就碰到了是否覆盖以前写的数据的问题,看FileWriter();的参数后面的参数名叫append,用词典查是附加的意思,灵机一动,改成false ...
- System 类的使用
/*System 系统类 主要用于获取系统的属性数据.System类常用的方法: arraycopy(Object src, int srcPos, Object dest, int destPos, ...
- GIT的使用及心得
先给大家个很棒的GIT使用教程链接http://blog.jobbole.com/78960/ 这个链接是我在学习使用GIT时看的教程博客,分享给大家,里面还有介绍SVN与GIT的区别 GITHUB上 ...
- 团队作业之404 Note Found Team
如果记忆是一个罐头的话,我希望这一罐罐头不会过期----<重庆森林> 404 Note Found Team 如果记忆是一个备忘录的话,别说了,它不会过期----<404 Note ...
- 树莓派与Arduino Leonardo使用NRF24L01无线模块通信之基于RF24库 (四) 树莓派单子节点查询
考虑到项目的实际需要,树莓派作为主机,应该只在需要的时候查询特定节点发送的数据,因此接收到数据后需要根据头部判断是否是自己需要的数据,如果不是继续接收数据,超过一定时间未查询到特定节点的数据,则退出程 ...
- 0422数学口袋精灵bug发现
团队成员的博客园地址: 蔡彩虹:http://home.cnblogs.com/u/caicaihong/ 曾治业:http://www.cnblogs.com/zzy999/ 蓝叶:http://w ...
- PAT 甲级 1150 Travelling Salesman Problem
https://pintia.cn/problem-sets/994805342720868352/problems/1038430013544464384 The "travelling ...
- PAT 1034 有理数四则运算
https://pintia.cn/problem-sets/994805260223102976/problems/994805287624491008 本题要求编写程序,计算2个有理数的和.差.积 ...