题目大意:有一棵$n$个节点的树,点的标号为$1$到$n$。树中的边有边权。给你$m$个询问,每个询问包含三个参数$l,r,pos$,你要求出标号在$l$到$r$之间的所有点中,到节点$pos$距离最近的点离$pos$有多远。

数据范围:$n,m,l,r,pos≤10^5$,强制在线。

此题我强制在线两个变量打反了,$wa$了一发。

我们考虑点分治,对于节点x,我们在节点$x$上种一个线段树,保存以$x$为跟(点分治树树根)的子树内,每个节点距离x的距离。

对于一组查询,我们直接在点分治树上从下往上条,每跳到一个节点查询一次就可以了。

时间复杂度:$O(n\log^2\ n)$。

 #include<bits/stdc++.h>
#define M 100005
#define INF 1e9
using namespace std; struct edge{int u,v,next;}e[M*]={}; int head[M]={},use=;
void add(int x,int y,int z){use++;e[use].u=y;e[use].v=z;e[use].next=head[x];head[x]=use;} int siz[M]={},vis[M]={},Minn=,minid=,n;
void dfssiz(int x,int fa){siz[x]=;for(int i=head[x];i;i=e[i].next) if(e[i].u!=fa&&vis[e[i].u]==) dfssiz(e[i].u,x),siz[x]+=siz[e[i].u];}
void dfsmin(int x,int fa,int fsiz){int maxn=fsiz-siz[x]; for(int i=head[x];i;i=e[i].next) if(e[i].u!=fa&&vis[e[i].u]==) dfsmin(e[i].u,x,fsiz),maxn=max(maxn,siz[e[i].u]);if(maxn<Minn) Minn=maxn,minid=x;}
int makeroot(int x){Minn=M; dfssiz(x,); dfsmin(x,,siz[x]); return minid;} int lc[M*]={},rc[M*]={},minn[M*]={},root[M]={},cnt=;
void updata(int &x,int l,int r,int k,int val){
if(!x) minn[x=++cnt]=INF; minn[x]=min(minn[x],val);
if(l==r) return; int mid=(l+r)>>;
(k<=mid)?updata(lc[x],l,mid,k,val):updata(rc[x],mid+,r,k,val);
}
int query(int x,int l,int r,int ll,int rr){
if(x==||(ll<=l&&r<=rr)) return minn[x];
int mid=(l+r)>>,res=INF;
if(ll<=mid) res=min(res,query(lc[x],l,mid,ll,rr));
if(mid<rr) res=min(res,query(rc[x],mid+,r,ll,rr));
return res;
}
void build(int x,int fa,int dis,int &Root){
updata(Root,,n,x,dis);
for(int i=head[x];i;i=e[i].next) if(e[i].u!=fa&&vis[e[i].u]==) build(e[i].u,x,dis+e[i].v,Root);
} int fa[M]={};
void solve(int x,int F){
x=makeroot(x); vis[x]=; fa[x]=F;
build(x,,,root[x]);
for(int i=head[x];i;i=e[i].next) if(vis[e[i].u]==) solve(e[i].u,x);
}
void ReadData(){
minn[]=INF;
scanf("%d",&n);
for(int i=;i<n;i++){
int x,y,z; scanf("%d%d%d",&x,&y,&z);
add(x,y,z); add(y,x,z);
}
solve(,);
} int query(int l,int r,int pos){
int minn=INF;
for(int x=pos;x;x=fa[x]){
int disnow=query(root[x],,n,l,r);
int dispos=query(root[x],,n,pos,pos);
minn=min(minn,dispos+disnow);
}
return minn;
}
void Solve(){
int q,ans=; scanf("%d",&q);
while(q--){
int l,r,pos; scanf("%d%d%d",&l,&r,&pos); pos^=ans;
printf("%d\n",ans=query(l,r,pos));
}
} int main(){
ReadData();
Solve();
}

【xsy1230】 树(tree) 点分治+线段树的更多相关文章

  1. 2019ICPC上海网络赛 A Lightning Routing I 点分树(动态点分治)+线段树

    题意 给一颗带边权的树,有两种操作 \(C~e_i~w_i\),将第\(e_i\)条边的边权改为\(w_i\). \(Q~v_i\),询问距\(v_i\)点最远的点的距离. 分析 官方题解做法:动态维 ...

  2. [APIO2019] [LOJ 3146] 路灯 (cdq分治或树状数组套线段树)

    [APIO2019] [LOJ 3146] 路灯 (cdq分治或树状数组套线段树) 题面 略 分析 首先把一组询问(x,y)看成二维平面上的一个点,我们想办法用数据结构维护这个二维平面(注意根据题意这 ...

  3. UVALive 7148 LRIP【树分治+线段树】

    题意就是要求一棵树上的最长不下降序列,同时不下降序列的最小值与最大值不超过D. 做法是树分治+线段树,假设树根是x,y是其当前需要处理的子树,对于子树y,需要处理出两个数组MN,MX,MN[i]表示以 ...

  4. poj 3237 Tree(树链剖分,线段树)

    Tree Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 7268   Accepted: 1969 Description ...

  5. 【loj6145】「2017 山东三轮集训 Day7」Easy 动态点分治+线段树

    题目描述 给你一棵 $n$ 个点的树,边有边权.$m$ 次询问,每次给出 $l$ .$r$ .$x$ ,求 $\text{Min}_{i=l}^r\text{dis}(i,x)$ . $n,m\le ...

  6. POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和)

    POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和) 题意分析 卡卡屋前有一株苹果树,每年秋天,树上长了许多苹果.卡卡很喜欢苹果.树上有N个节点,卡卡给他们编号1到N,根 ...

  7. 【BZOJ4372】烁烁的游戏 动态树分治+线段树

    [BZOJ4372]烁烁的游戏 Description 背景:烁烁很喜欢爬树,这吓坏了树上的皮皮鼠.题意:给定一颗n个节点的树,边权均为1,初始树上没有皮皮鼠.烁烁他每次会跳到一个节点u,把周围与他距 ...

  8. HDU 5618 Jam's problem again(三维偏序,CDQ分治,树状数组,线段树)

    Jam's problem again Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  9. 【bzoj4372】烁烁的游戏 动态点分治+线段树

    题目描述 给一颗n个节点的树,边权均为1,初始点权均为0,m次操作:Q x:询问x的点权.M x d w:将树上与节点x距离不超过d的节点的点权均加上w. 输入 第一行两个正整数:n,m接下来的n-1 ...

随机推荐

  1. memcached 连接本地问题

    刚开始学memcache ,就遇到一个问题. telnet 127.0.0.1 11211   回车之后就什么都没有提示了.然后不管设置什么都是报error . 表示不知道如何解决!先写个文章记录下来 ...

  2. 2018.09.01 loj#2330. 「清华集训 2017」榕树之心(树形dp)

    传送门 树形dp好题啊. 我们用w[i]" role="presentation" style="position: relative;">w[ ...

  3. 关于EmitMapper,映射配置

    public static T Snapshoot<T>(this XtraForm form, T obj) { var config = new DefaultMapConfig(); ...

  4. HDU 1009 FatMouse' Trade (贪心算法)

    题意:就是老鼠要用猫粮换粮食,第i个房间一些东西,要用东西去换,可以不全换.问给定的猫粮最多能换多少粮食. 析:贪心算法.我们先算出来每个房间物品的平均价格是多少,肯定越低越好,并且如果能全换就全换, ...

  5. (连通图 模板题 无向图求桥)Critical Links -- UVA -- 796

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  6. java分层

    一.为什么要分层. 以前的我们,写代码的时候,都在main()方法中,出现了错误,就慢慢调试,这样浪费了我们很长的时间,而我们程序员的时间是非常宝贵的 但是当我们使用分层架构的时候,就可以清晰明确的知 ...

  7. This problem will occur when running in 64 bit mode with the 32 bit Oracle client components installed(在64位模式下运行安装了32位的Oracle客户端组件时,会发生此问题)

    部署win服务时出现下面的问题: 在事件查看器中看到如下错误: 日志名称: Application来源: ***调度服务日期: 2014/5/21 12:53:21事件 ID: 0任务类别: 无级别: ...

  8. [Openwrt 项目开发笔记]:MySQL配置(六)

    [Openwrt项目开发笔记]系列文章传送门:http://www.cnblogs.com/double-win/p/3888399.html 正文: 在本人的项目中,运行在路由器上的服务器采用Ngi ...

  9. nodejs+express安装配置(Linux版本)

    在ubuntu下面,直接从源里面安装nodejs的话,此版本还行,但是相关的express等,会比较老. 采用源码安装,先下载nodejs的源码,然后三步: ./configure make make ...

  10. TSQL--删除登陆相关的用户

    无二话,上代码 --删除登陆相关的用户 --遍历所有数据库,查找到与登录名相关联的的用户,生成删除脚本 ) SET @loginName='DBA'; DECLARE @comm NVARCHAR(M ...