和导师在Computers & Geosciences上发表的关于多流向算法GPU并行化的文章(SCI, IF=1.834)。

论文:http://sourcedb.igsnrr.cas.cn/zw/lw/201207/P020120717506311161951.pdf

As one of the important tasks in digital terrain analysis, the calculation of flow accumulations from gridded digital elevation models (DEMs) usually involves two steps in a real application: (1) using an iterative DEM preprocessing algorithm to remove the depressions and flat areas commonly contained in real DEMs, and (2) using a recursive flow-direction algorithm to calculate the flow accumulation for every cell in the DEM. Because both algorithms are computationally intensive, quick calculation of the flow accumulations from a DEM (especially for a large area) presents a practical challenge to personal computer (PC) users. In recent years, rapid increases in hardware capacity of the graphics processing units (GPUs) provided in modern PCs have made it possible to meet this challenge in a PC environment. Parallel computing on GPUs using a compute-unified-device-architecture (CUDA) programming model has been explored to speed up the execution of the single-flow-direction algorithm (SFD). However, the parallel implementation on a GPU of the multiple-flow-direction (MFD) algorithm, which generally performs better than the SFD algorithm, has not been reported. Moreover, GPU-based parallelization of the DEM preprocessing step in the flow-accumulation calculations has not been addressed. This paper proposes a parallel approach to calculate flow accumulations (including both iterative DEM preproces- sing and a recursive MFD algorithm) on a CUDA-compatible GPU. For the parallelization of an MFD algorithm (MFD-md), two different parallelization strategies using a GPU are explored. The first parallelization strategy, which has been used in the existing parallel SFD algorithm on GPU, has the problem of computing redundancy. Therefore, we designed a parallelization strategy based on graph theory. The application results show that the proposed parallel approach to calculate flow accumula- tions on a GPU performs much faster than either sequential algorithms or other parallel GPU-based algorithms based on existing parallelization strategies.

多流向算法GPU并行化的更多相关文章

  1. 分布式机器学习:PageRank算法的并行化实现(PySpark)

    1. PageRank的两种串行迭代求解算法 我们在博客<数值分析:幂迭代和PageRank算法(Numpy实现)>算法中提到过用幂法求解PageRank. 给定有向图 我们可以写出其马尔 ...

  2. GPU:并行计算利器

    http://blog.jobbole.com/87849/     首页 最新文章 IT 职场 前端 后端 移动端 数据库 运维 其他技术 - 导航条 - 首页 最新文章 IT 职场 前端 - Ja ...

  3. 基于GPU的算法并行化

    GPU计算的目的即是计算加速.相比于CPU,其具有以下三个方面的优势: l  并行度高:GPU的Core数远远多于CPU(如G100 GPU有240个Cores),从而GPU的任务并发度也远高于CPU ...

  4. 基于spark实现并行化Apriori算法

    详细代码我已上传到github:click me 一. 实验要求         在 Spark2.3 平台上实现 Apriori 频繁项集挖掘的并行化算法.要求程序利用 Spark 进行并行计算. ...

  5. 玩深度学习选哪块英伟达 GPU?有性价比排名还不够!

    本文來源地址:https://www.leiphone.com/news/201705/uo3MgYrFxgdyTRGR.html 与“传统” AI 算法相比,深度学习(DL)的计算性能要求,可以说完 ...

  6. 【并行计算-CUDA开发】浅谈GPU并行计算新趋势

    随着GPU的可编程性不断增强,GPU的应用能力已经远远超出了图形渲染任务,利用GPU完成通用计算的研究逐渐活跃起来,将GPU用于图形渲染以外领域的计算成为GPGPU(General Purpose c ...

  7. mahout中kmeans算法和Canopy算法实现原理

    本文讲一下mahout中kmeans算法和Canopy算法实现原理. 一. Kmeans是一个很经典的聚类算法,我想大家都非常熟悉.虽然算法较为简单,在实际应用中却可以有不错的效果:其算法原理也决定了 ...

  8. 标签传播算法(Label Propagation)及Python实现

    众所周知,机器学习可以大体分为三大类:监督学习.非监督学习和半监督学习.监督学习可以认为是我们有非常多的labeled标注数据来train一个模型,期待这个模型能学习到数据的分布,以期对未来没有见到的 ...

  9. Weka算法Classifier-meta-AdaBoostM1源代码分析(一)

    多分类器组合算法简单的来讲经常使用的有voting,bagging和boosting,当中就效果来说Boosting略占优势,而AdaBoostM1算法又相当于Boosting算法的"经典款 ...

随机推荐

  1. jdk tomcat maven svn plsql客户端 环境变量配置整理

    1 jdk 新建: 1.JAVA_HOME   -----  C:\Program Files\Java\jdk1.7.0 2.CLASSPATH  ------   .;%JAVA_HOME%\li ...

  2. vc6.0 PK vs2010

    从VC++6.0不足看VisualC++2010新特性 说起VC,有人想到维生素C(维C),有人想到风险投资(venture capital), 程序员们尤其是做底层开发的程序员或老程序员们第一感觉肯 ...

  3. Android-控制整个APP的异常收集与处理

    控制整个App的异常收集与处理,使用前记得要在Application中初始化initCrasHandler CrasHandler APP异常收集类: package common.library.e ...

  4. Python学习-29.Python中列表的一些操作

    in关键字: 注意这个是关键字,用来判断元素是否在集合中存在. list = ['a','b','c'] print('a' in list) print('f' in list) 将依次输出 Tru ...

  5. [ACM_动态规划] hdu1003 Max Sum [最大连续子串和]

    Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum ...

  6. 一起学习MVC(3)Views的学习

          _ViewStart.cshtml._Layout.cshtml.Index.cshtml三个页面加载时候的先后顺序就是: _Layout.cshtml ViewStart.cshtml ...

  7. 学习Spring Data JPA

    简介 Spring Data 是spring的一个子项目,在官网上是这样解释的: Spring Data 是为数据访问提供一种熟悉且一致的基于Spring的编程模型,同时仍然保留底层数据存储的特​​殊 ...

  8. 关于STM32位带操作随笔

    以前在学习STM32时候关注过STM32的位带操作,那时候只是知道位带是啥,用来干嘛用,说句心里话,并没有深入去学习,知其然而不知其所以然.但一直在心中存在疑惑,故今日便仔细看了一下,写下心得供日后参 ...

  9. 附2 volatile

    注:在阅读本章之前,先要了解Java内存模型,见上一章<附1 Java内存模型与共享变量可见性>,链接如下: http://www.cnblogs.com/java-zhao/p/5124 ...

  10. Python爬虫入门教程 65-100 爬虫与反爬虫的修罗场,点评网站,字体反爬之三

    爬虫与反爬虫的修罗场 哪种平台最吸引爬虫爱好者,当然是社区类的,那里容易产生原生态,高质量的数据啊, 你看微博,知乎,豆瓣爬的不亦乐乎. 评论也是产生内容的好地方 生活类点评网站 旅游类点评网站 音乐 ...