显然有决策单调性,但由于逆序对不容易计算,考虑分治DP。

solve(k,x,y,l,r)表示当前需要选k段,待更新的位置为[l,r],这些位置的可能决策点区间为[x,y]。暴力计算出(l+r)/2的决策位置s,两边递归下去继续操作。solve(k,x,s,l,mid-1),solve(k,s,y,mid+1,r)。

注意到每个位置每层只会被一个区间遍历到,加上树状数组在线更新逆序对的复杂度,总复杂度为$O(kn\log^2n)$

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=,inf=;
int n,m,a[N],f[][N],c[N],l,r,cur; void add(int x,int k){ for (; x<=n; x+=x&-x) c[x]+=k; }
int que(int x){ int res=; for (; x; x-=x&-x) res+=c[x]; return res; } void upd(int L,int R){
while (r<R) cur+=r-l+-que(a[r+]),add(a[++r],);
while (l>L) cur+=que(a[l-]),add(a[--l],);
while (r>R) add(a[r--],-),cur-=r-l+-que(a[r+]);
while (l<L) add(a[l++],-),cur-=que(a[l-]);
} void solve(int k,int x,int y,int l,int r){
if (l>r) return;
int mid=(l+r)>>,id=min(mid-,y);
f[k][mid]=inf;
for (int i=min(mid-,y); i>=x; i--){
upd(i+,mid);
if (f[k-][i]+cur<=f[k][mid]) f[k][mid]=f[k-][i]+cur,id=i;
}
solve(k,x,id,l,mid-); solve(k,id,y,mid+,r);
} int main(){
freopen("bzoj5125.in","r",stdin);
freopen("bzoj5125.out","w",stdout);
scanf("%d%d",&n,&m); l=; r=;
rep(i,,n) scanf("%d",&a[i]);
rep(i,,n) f[][i]=inf;
rep(j,,m) solve(j,,n-,,n);
printf("%d\n",f[m][n]);
return ;
}

[BZOJ5125]小Q的书架(决策单调性+分治DP+树状数组)的更多相关文章

  1. [APIO2019] [LOJ 3146] 路灯 (cdq分治或树状数组套线段树)

    [APIO2019] [LOJ 3146] 路灯 (cdq分治或树状数组套线段树) 题面 略 分析 首先把一组询问(x,y)看成二维平面上的一个点,我们想办法用数据结构维护这个二维平面(注意根据题意这 ...

  2. bzoj 1176 cdq分治套树状数组

    题面: 维护一个W*W的矩阵,初始值均为S.每次操作可以增加某格子的权值,或询问某子矩阵的总权值.修改操作数M<=160000,询问数Q<=10000,W<=2000000. Inp ...

  3. BZOJ5125 小Q的书架(决策单调性+动态规划+分治+树状数组)

    设f[i][j]为前i个划成j段的最小代价,枚举上个划分点转移.容易想到这个dp有决策单调性,感性证明一下比较显然.如果用单调栈维护决策就不太能快速的求出逆序对个数了,改为使用分治,移动端点时树状数组 ...

  4. CF833D Red-Black Cobweb 点分治、树状数组

    传送门 统计所有路径的边权乘积的乘积,不难想到点分治求解. 边权颜色比例在\([\frac{1}{2},2]\)之间,等价于\(2B \geq R , 2R \geq B\)(\(R,B\)表示红色和 ...

  5. 【BZOJ4285】使者 cdq分治+扫描线+树状数组

    [BZOJ4285]使者 Description 公元 8192 年,人类进入星际大航海时代.在不懈的努力之下,人类占领了宇宙中的 n 个行星,并在这些行星之间修建了 n - 1 条星际航道,使得任意 ...

  6. HDU 5618 Jam's problem again(三维偏序,CDQ分治,树状数组,线段树)

    Jam's problem again Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  7. bzoj2253纸箱堆叠(动态规划+cdq分治套树状数组)

    Description P 工厂是一个生产纸箱的工厂.纸箱生产线在人工输入三个参数 n p a , 之后,即可自动化生产三边边长为 (a mod P,a^2 mod p,a^3 mod P) (a^4 ...

  8. BZOJ 2716 [Violet 3]天使玩偶 (CDQ分治、树状数组)

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2716 怎么KD树跑得都那么快啊..我写的CDQ分治被暴虐 做四遍CDQ分治,每次求一个 ...

  9. bzoj3730 震波 [动态点分治,树状数组]

    传送门 思路 如果没有强制在线的话可以离线之后CDQ分治随便搞. 有了强制在线之后--可能可以二维线段树?然而我不会算空间. 然后我们莫名其妙地想到了动态点分治,然后这题就差不多做完了. 点分树有一个 ...

随机推荐

  1. 适配器在JavaScript中的体现

    适配器设计模式在JavaScript中非常有用,在处理跨浏览器兼容问题.整合多个第三方SDK的调用,都可以看到它的身影. 其实在日常开发中,很多时候会不经意间写出符合某种设计模式的代码,毕竟设计模式就 ...

  2. 编写高效的JavaScript程序

    作者: Addy Osmani  来源: CSDN  发布时间: 2013-01-10 14:15  阅读: 7952 次  推荐: 15   原文链接   [收藏] 英文原文:Writing Fas ...

  3. Java Dom对XML的解析和修改操作

    与Dom4J和JDom对XML的操作类似,JDK提供的JavaDom解析器用起来一样方便,在解析XML方面Java DOM甚至更甚前两者一筹!其不足之处在于对XML的增删改比较繁琐,特开篇介绍... ...

  4. numpy细碎知识点

    np.random.rand() 基于python自带模块random的random函数的一个延伸吧,生成指定数量的列表 np.random.rand(a,b) 参数a,b均为整型,生成含有a个元素的 ...

  5. Python大数据处理案例

    分享 知识要点:lubridate包拆解时间 | POSIXlt利用决策树分类,利用随机森林预测利用对数进行fit,和exp函数还原 训练集来自Kaggle华盛顿自行车共享计划中的自行车租赁数据,分析 ...

  6. Java基础83 JSP标签及jsp自定义标签(网页知识)

    1.JSP标签 替代jsp脚本,用于jsp中执行java代码1.1.内置标签:  <jsp:forward></jsp:forward>  相当于:request.getReu ...

  7. java基础24 线程、多线程及线程的生命周期(Thread)

    1.1.进程 正在执行的程序称作为一个进程.进程负责了内存空间的划分 疑问1:windows电脑称之为多任务的操作系统,那么Windows是同时运行多个应用程序呢? 从宏观的角度:windows确实在 ...

  8. 洛谷P1120 小木棍(升级版)

    传送门啦 一道经典的搜索剪枝题,不废话,步入正题. 分析: 一.输入时手动过滤不合法的情况 二.很明显我们要枚举把哪些棍子拼接成原来的长棍,而原始长度(原来的长棍的长度)都相等,因此我们可以在 $ d ...

  9. 一篇文章读懂开源web引擎Crosswalk-《转载》

    前言 Web技术的优势早已被广大应用开发者熟知,比如可与云服务轻松集成,基于响应式UI设计的精美布局,高度的开放性,跨平台能力, 高效的分发与部署等等.伴随着移动互联网的快速发展与HTML5技术的逐步 ...

  10. 实现nlp文本生成中的beam search解码器

    自然语言处理任务,比如caption generation(图片描述文本生成).机器翻译中,都需要进行词或者字符序列的生成.常见于seq2seq模型或者RNNLM模型中. 这篇博文主要介绍文本生成解码 ...