BZOJ2111 ZJOI2010排列计数
根据Pi>Pi/2可以看出来这是一个二叉树
所以我们可以用树形DP的思想
f[i]=f[i<<1]*f[i<<1|1]*C(s[i]-1,s[i<<1]),s是子树大小
然后求组合数可以用卢卡斯定理
BZ上加强数据后我那个线性求n!逆元就挂掉了,于是就直接算了。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e6+;
ll f[N<<],fac[N],inv[N],s[N<<];
ll n,mod;
ll qmod(ll a,ll b)
{
ll ans=;
while(b)
{
if(b&)ans=ans*a%mod;
a=a*a%mod;b>>=;
}
return ans;
}
ll C(ll a,ll b)
{
if(a<b)return ;
if(a<mod&&b<mod)return fac[a]*qmod(fac[b]*fac[a-b]%mod,mod-)%mod;
return C(a/mod,b/mod)*C(a%mod,b%mod)%mod;
}
int main()
{
scanf("%lld%lld",&n,&mod);
fac[]=;
for(int i=;i<=n;++i)fac[i]=i*fac[i-]%mod;
for(int i=n;i;--i)
{
s[i]=s[i<<]+s[(i<<)|]+;f[i]=;
if((i<<)<=n)f[i]=f[i]*f[i<<]%mod;
if((i<<|)<=n)f[i]=f[i]*f[i<<|]%mod;
f[i]=f[i]*C(s[i]-,s[i<<])%mod;
}
printf("%lld",f[]);
return ;
}
BZOJ2111 ZJOI2010排列计数的更多相关文章
- bzoj2111 [ZJOI2010]排列计数
Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic ...
- 【BZOJ2111】[ZJOI2010]排列计数(组合数学)
[BZOJ2111][ZJOI2010]排列计数(组合数学) 题面 BZOJ 洛谷 题解 就是今年九省联考\(D1T2\)的弱化版? 直接递归组合数算就好了. 注意一下模数可以小于\(n\),所以要存 ...
- [ZJOI2010]排列计数 (组合计数/dp)
[ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...
- 洛谷 P2606 [ZJOI2010]排列计数 解题报告
P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...
- P2606 [ZJOI2010]排列计数
P2606 [ZJOI2010]排列计数 因为每个结点至多有一个前驱,所以我们可以发现这是一个二叉树.现在我们要求的就是以1为根的二叉树中,有多少种情况,满足小根堆的性质. 设\(f(i)\)表示以\ ...
- BZOJ2111:[ZJOI2010]排列计数——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=2111 https://www.luogu.org/problemnew/show/P2606#su ...
- 洛谷P2606 [ZJOI2010]排列计数(组合数 dp)
题意 题目链接 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案 ...
- bzoj2111 Perm 排列计数
称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输 ...
- [ZJOI2010]排列计数
题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...
随机推荐
- 创造101:如果软件测试工程师组团出道,怎样才能站C位?!
作者 C位出道的华华 虽然华华是一个软件测试技术宅,可以连续七七四十九天加班不重样,心里除了上班工作学习写代码就没有别的爱好了,但是各种潮流资讯啊狗血剧啊娱乐综艺啊,从来没有错过. 比如说现在大火的& ...
- 【译】第四篇 Integration Services:增量加载-Updating Rows
本篇文章是Integration Services系列的第四篇,详细内容请参考原文. 回顾增量加载记住,在SSIS增量加载有三个使用案例:1.New rows-add rows to the dest ...
- UNIX环境高级编程 第6章 系统数据文件和信息
UNIX系统的正常运作需要用到大量与系统有关的数据文件,例如系统用户账号.用户密码.用户组等文件.出于历史原因,这些数据文件都是ASCII文本文件,并且使用标准I/O库函数来读取. 口令文件 /etc ...
- Libheap:一款用于分析Glibc堆结构的GDB调试工具
Libheap是一个用于在Linux平台上分析glibc堆结构的GDB调试脚本,使用Python语言编写. 安装 Glibc安装 尽管Libheap不要求glibc使用GDB调试支持和 ...
- JS函数的几种用法
1.正常使用:
- 新浪的wap网站,发现原来我们的head存在着这样的差异
前一段时间一直被wap网站的自适应困惑…… 仔细研究了一下新浪的wap网站,发现原来我们的head存在着这样的差异…… <%@page contentType="text/html;c ...
- Android性能测试工具之APT
1.APT工具简介: APT是一个eclipse插件,可以实时监控Android手机上多个应用的CPU.内存数据曲线,并保存数据:另外还支持自动获取内存快照.PMAP文件分析等,方便开发人员自测或者测 ...
- RStdio常用快捷键
掌握常用快捷键的使用, 可以让我们的效率加倍! 下面只列举了一些最常见的快捷键, RStdio的快捷键远不止这些, 具体的可以参照这里. 无论是在控制台还是在编辑区, Tab都可以帮助我们对代码进行补 ...
- centos7联网
一般centos安装(在虚拟机上安装)完成后需要自己配置服务,下面我就讲下如何配置 配置联网步骤 首先,打开虚拟机的两个服务,右击我的电脑-->管理--->找到服务-->右击启动 两 ...
- node练习笔记
一.用http模块实现客户端 1. 这个错误的原因是:客户端http_client.js里面的端口和服务端里面的端口不一样 2.querystring.stringify 字符串转换成对象 q ...