BZOJ2111 ZJOI2010排列计数
根据Pi>Pi/2可以看出来这是一个二叉树
所以我们可以用树形DP的思想
f[i]=f[i<<1]*f[i<<1|1]*C(s[i]-1,s[i<<1]),s是子树大小
然后求组合数可以用卢卡斯定理
BZ上加强数据后我那个线性求n!逆元就挂掉了,于是就直接算了。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e6+;
ll f[N<<],fac[N],inv[N],s[N<<];
ll n,mod;
ll qmod(ll a,ll b)
{
ll ans=;
while(b)
{
if(b&)ans=ans*a%mod;
a=a*a%mod;b>>=;
}
return ans;
}
ll C(ll a,ll b)
{
if(a<b)return ;
if(a<mod&&b<mod)return fac[a]*qmod(fac[b]*fac[a-b]%mod,mod-)%mod;
return C(a/mod,b/mod)*C(a%mod,b%mod)%mod;
}
int main()
{
scanf("%lld%lld",&n,&mod);
fac[]=;
for(int i=;i<=n;++i)fac[i]=i*fac[i-]%mod;
for(int i=n;i;--i)
{
s[i]=s[i<<]+s[(i<<)|]+;f[i]=;
if((i<<)<=n)f[i]=f[i]*f[i<<]%mod;
if((i<<|)<=n)f[i]=f[i]*f[i<<|]%mod;
f[i]=f[i]*C(s[i]-,s[i<<])%mod;
}
printf("%lld",f[]);
return ;
}
BZOJ2111 ZJOI2010排列计数的更多相关文章
- bzoj2111 [ZJOI2010]排列计数
Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic ...
- 【BZOJ2111】[ZJOI2010]排列计数(组合数学)
[BZOJ2111][ZJOI2010]排列计数(组合数学) 题面 BZOJ 洛谷 题解 就是今年九省联考\(D1T2\)的弱化版? 直接递归组合数算就好了. 注意一下模数可以小于\(n\),所以要存 ...
- [ZJOI2010]排列计数 (组合计数/dp)
[ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...
- 洛谷 P2606 [ZJOI2010]排列计数 解题报告
P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...
- P2606 [ZJOI2010]排列计数
P2606 [ZJOI2010]排列计数 因为每个结点至多有一个前驱,所以我们可以发现这是一个二叉树.现在我们要求的就是以1为根的二叉树中,有多少种情况,满足小根堆的性质. 设\(f(i)\)表示以\ ...
- BZOJ2111:[ZJOI2010]排列计数——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=2111 https://www.luogu.org/problemnew/show/P2606#su ...
- 洛谷P2606 [ZJOI2010]排列计数(组合数 dp)
题意 题目链接 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案 ...
- bzoj2111 Perm 排列计数
称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输 ...
- [ZJOI2010]排列计数
题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...
随机推荐
- UNIX环境高级编程 第9章 进程关系
在第8章学习了进程的控制原语,通过各种进程原语可以对进程进行控制,包括新建进程.执行新程序.终止进程等.在使用fork( )产生新进程后,就出现了进程父子进程的概念,这是进程间的关系.本章更加详细地说 ...
- C# WebClient、 jsonp实现跨域
WebClient 无传输数据获取 Uri uri = new Uri(allURL); WebClient wc = new WebClient(); wc.Encoding = System.Te ...
- linux下使用indent整理代码(代码格式化)【转】
转自:https://blog.csdn.net/jiangjingui2011/article/details/7197069 常用的设置: indent -npro -kr -i8 -ts8 -s ...
- linux设备驱动之USB主机控制器驱动分析 【转】
转自:http://blog.chinaunix.net/uid-20543183-id-1930831.html ---------------------------------------- ...
- 新浪的wap网站,发现原来我们的head存在着这样的差异
前一段时间一直被wap网站的自适应困惑…… 仔细研究了一下新浪的wap网站,发现原来我们的head存在着这样的差异…… <%@page contentType="text/html;c ...
- python基础--random模块
python使用random生成随机数 下面是主要函数random.random()用于生成一个0到1的随机符点数: 0 <= n < 1.0random.randint(a, b)生成的 ...
- Ajax请求中的async:false/true
Ajax请求中的async:false/trueasync. 默认是 true,即为异步方式,$.ajax执行后,会继续执行ajax后面的脚本,直到服务器端返回数据后,触发$.ajax里的succes ...
- Spark(一)Spark简介
一.官网介绍 1 什么是Spark 官网地址:http://spark.apache.org/ Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎.Spark是UC Berkel ...
- CentOs 安装 swftools
一 下载安装包 #wget http://www.swftools.org/swftools-0.9.1.tar.gz 二 安装相关依赖库 #yum install gcc* automake zli ...
- easyUI小技巧-纯干货
一.显示分页(pagination:true)情况下,隐藏每页显示的记录条数的那个select(即pageList),下图箭头 方法1:onBeforeLoad:function(param){ ...