由一个题引入:

求一个串A的最长回文串:
  A=abababa
最长回文串长度:5(ababa)

先思考用hash怎么做?

一、暴力
  枚举左端,右端点(确定一个区间),线性扫一遍当前区间。
  Ans=max(ans);

  时间复杂度:O(n^3)
  貌似也有O(n^2)的暴力,在此不再赘述。
二、哈希
  分设两个hash数组, ha1记录前缀, ha2记录后缀。
  对于任意[l,r] 若ha1[l,mid]==ha2[mid+1,r],则为回文串
  Ans=max(ans);

  时间复杂度:O(nlog 2 n)
三、manacher
  而manacher算法也可以在O(n)的时间内求出答案

定义数组 p[i]表示以i为中心的(包含i个这个字符)回文串半长。

将字符串s从前扫到后,来计算p[i],则最大的p[i]就是最长回文串长度。

算法流程:
由于s是从前扫描到最后的,所以需要计算p[i]时一定计算好了p[1]~~p[i-1]
假设现在扫描到了i+k这个位置,现在需要计算p[i+k]
定义maxlen是位置i+k位置前所有回文串中能延伸到的最有右端的位置,即maxlen=p[i]+i;
p[i]表示半径长,i 表示目前最长的位置。

有两种情况:

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#define m(s) memset(s,0,sizeof s);
using namespace std;
const int N=1e6+;
int l,cas,len,p[N<<];
char s[N],S[N<<];
void manacher(){
int ans=,id=,mx=-;
for(int i=;i<l;i++){
if(id+mx>i) p[i]=min(p[id*-i],id+mx-i);
while(i-p[i]->=&&i+p[i]+<=l&&S[i-p[i]-]==S[i+p[i]+]) p[i]++;
if(id+mx<i+p[i]) id=i,mx=p[i];
ans=max(ans,p[i]);
}
printf("Case %d: %d\n",++cas,ans);
}
int main(){
while(scanf("%s",s)==){
if(s[]=='E') break;
len=strlen(s);m(p);m(S);
l=-;
for(int i=;i<len;i++) S[++l]='#',S[++l]=s[i];
S[++l]='#';
manacher();
}
return ;
}

关于manacher的应用:

应用1.输入一个字符串Str,输出Str里最长回文子串的长度。 模板的用法

应用2.判断是否能将字符串S分成三段非空回文串。

【输入说明】
第一行一个整数T,表示数据组数。
对于每一个组,仅包含一个由小写字母组成的串。
【输出说明】
对于每一组,单行输出"Yes" 或 "No“

解:

 对原串前缀和后缀作一个01标记pre[i],suf[i]表示1-i和i-n能否能形成回文。记以i为中心的回文半径为r(i)。
 这些都可以在O(N)时间内求出。也可以使用Hash+二分等方法O(NlogN)内求出。
 我们考虑中间一个回文串的位置,不妨设它是奇数长度(偶数类似)。
 那么问题变成了求一个i和d使得1<=d<=r(i)且pre[i-d]和suf[i+d]为真。
 枚举i,实际上就是问pre[i-r(i)..i-1]和suf[i+1..i+r(i)]取反后这两段有没有一个位置两者均为1,也就是and后不为0,暴力压位即可。
推荐:HDU 5340

一世安宁

关于manacher的更多相关文章

  1. HDU3068 回文串 Manacher算法

    好久没有刷题了,虽然参加过ACM,但是始终没有融会贯通,没有学个彻底.我干啥都是半吊子,一瓶子不满半瓶子晃荡. 就连简单的Manacher算法我也没有刷过,常常为岁月蹉跎而感到后悔. 问题描述 给定一 ...

  2. manacher算法专题

    一.模板 算法解析:http://www.felix021.com/blog/read.php?2040 *主要用来解决一个字符串中最长回文串的长度,在O(n)时间内,线性复杂度下,求出以每个字符串为 ...

  3. BZOJ2342 Manacher + set

    题一:别人介绍的一道题,题意是给出一个序列,我们要求出一段最常的连续子序列,满足:该子序列能够被平分为三段,第一段和第二段形成回文串,第二段和第三段形成回文串. 题二:BZOJ2342和这题非常的相似 ...

  4. lintcode最长回文子串(Manacher算法)

    题目来自lintcode, 链接:http://www.lintcode.com/zh-cn/problem/longest-palindromic-substring/ 最长回文子串 给出一个字符串 ...

  5. Manacher's algorithm

    Manacher's algorithm 以\(O(n)\)的线性时间求一个字符串的最大回文子串. 1. 预处理 一个最棘手的问题是需要考虑最长回文子串的长度为奇数和偶数的情况.我们通过在任意两个字符 ...

  6. 1089 最长回文子串 V2(Manacher算法)

    1089 最长回文子串 V2(Manacher算法) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 回文串是指aba.abba.cccbccc.aaaa ...

  7. Manacher's Algorithm 马拉车算法

    这个马拉车算法Manacher‘s Algorithm是用来查找一个字符串的最长回文子串的线性方法,由一个叫Manacher的人在1975年发明的,这个方法的最大贡献是在于将时间复杂度提升到了线性,这 ...

  8. 51nod1089(最长回文子串之manacher算法)

    题目链接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1089 题意:中文题诶~ 思路: 我前面做的那道回文子串的题 ...

  9. HDU - 3948 后缀数组+Manacher

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3948 题意:给定一个字符串,求字符串本质不同的回文子串个数. 思路:主要参考该篇解题报告 先按照man ...

  10. LeetCode 5 Longest Palindromic Substring manacher算法,最长回文子序列,string.substr(start,len) 难度:2

    https://leetcode.com/problems/longest-palindromic-substring/ manacher算法相关:http://blog.csdn.net/ywhor ...

随机推荐

  1. 如何生成.p12文件

    如何生成.p12文件 1. 打开钥匙串 2. 钥匙串选登录,种类选证书 3. 选择开发者,然后导出证书 4. 存储证书 5. 选择存储的时候会提示输入证书的密码,当然,也可以不用输入密码 6. 点击上 ...

  2. Linux 系统的/var目录

    /var目录主要针对常态性变动的文件,包括缓存(cache).登录档(log file)以及某些软件运作所产生的文件 /var目录下的重要目录 目录 应放置文件内容 /var/cache/ 应用程序本 ...

  3. Ubuntn系统(虚拟机)忘记密码的解决方法

    1.重启ubuntu系统,开机时长按shift按键进入GRUB菜单,选择第二个高级选项,enter键进入.如下图: 2.在高级选择中选择Recovery mode模式,键盘按“e”键进入编辑模式.如下 ...

  4. 2018.08.31 10:57 swift 学习心得

    其实我一直很喜欢swift,我觉得Xcode很先进,买了一台MacBook就可以操作了,蛮好的. var str = "Hello, playground" var myVaria ...

  5. php解析xml文件的方法

    最近一段时间在做模板包导入.模板包中包含有xml文件,,需要解析成给定的php数组格式. 我接触到了两种方法,分别是DOMDocument 方法和 simple_load_file. 个人偏好后一种, ...

  6. Css中路径data用法

    Data URI scheme是在RFC2397中定义的,目的是将一些小的数据,直接嵌入到网页中,从而不用再从外部文件载入. data:,文本数据 data:text/plain,文本数据 data: ...

  7. 【错误记录】python logging日志打印俩次的原因

    有一个原因是因为同一个handler被添加了俩次 applogger = loggerfactory.LoggerFactory.init_app_logger()perflogger = logge ...

  8. 3、Django下载与简介

    第1节:MVC与MTV模型 1.1 MVC Web服务器开发领域里著名的MVC模式,所谓MVC就是把Web应用分为模型(M),控制器(C)和视图(V)三层,他们之间以一种插件式的.松耦合的方式连接在一 ...

  9. Angular总结三:组件

    Angular 的应用就是一棵组件树,一个页面可以是一个组件,某一页面的一个区块也可以是一个组件.为了弄明白组件及组件树,我将原来做过的一个静态网站进行组件改造. 原项目地址 https://gith ...

  10. this 的使用方法 —— javascript中的this讲解!

    从自己刚刚开始学习javascript到现在已经很久了,今天得益于新酱的细心讲解,总算是把this这个“雾中花”看清晰了. 在此首先感谢新酱的讲解 下面将this的一些基本使用和大家分享一下: 查看t ...