https://www.lydsy.com/JudgeOnline/problem.php?id=4037

你有一个长度为n的数字串。定义f(S)为将S拆分成若干个1~m的数的和的方案数,比如m=2时,f(4)=5。

你可以将这个数字串分割成若干个数字(允许前导0),将他们加起来,求f,并求和。比如g(123)=f(1+2+3)+f(1+23)+f(12+3)+f(123)。

已知字符串和m后求答案对998244353(7*17*223+1,一个质数)取模后的值。

神仙?(亦或是我从来没见过如此神奇的快速幂于是强行神仙?)

参考:https://blog.csdn.net/H_Anonymity/article/details/78348610

$f$数组一个矩乘快速幂求出,然而并没有卵用。

我们令$f[i]$矩乘所需要的矩阵为$h[i]$。

考虑使用dp求$g$,按位考虑,我们每次加上这位所能带来的贡献。

……或者说,乘上?因为$f(x1+x2)=$初始矩阵$*h[x1]*h[x2]$。

于是令$dp[i]$表示前$i$位的求$g$矩阵,则我们有:

$dp[i]=\sum_{j=0}^{i-1}dp[j]*M_j$,其中$M_j=h[j+1$至$i$字符组成的数$]$。

为了求出$M$,我们可以求$f[i][j]$表示$h[i*10^j]$这样我们就能很快捷的求出来了。

听说这个就是神奇的十进制快速幂??

#include<queue>
#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int p=;
const int L=;
char s[L];
int n,m;
struct matrix{
ll g[][];
matrix(){
memset(g,,sizeof(g));
}
inline void one(){
for(int i=;i<m;i++)g[i][i]=;
}
matrix operator *(const matrix &b)const{
matrix c;
for(int i=;i<m;i++)
for(int j=;j<m;j++)
for(int k=;k<m;k++)
(c.g[i][j]+=g[i][k]*b.g[k][j]%p)%=p;
return c;
}
matrix operator +(const matrix &b)const{
matrix c;
for(int i=;i<m;i++)
for(int j=;j<m;j++)
c.g[i][j]=(g[i][j]+b.g[i][j])%p;
return c;
}
}f[][L],dp[L];
matrix qpow(matrix x,ll y){
matrix res;res.one();
while(y){
if(y&)res=res*x;
x=x*x;y>>=;
}
return res;
}
void solve(){
f[][].one();
for(int i=;i<m;i++)f[][].g[i][]=;
for(int i=;i<m;i++)f[][].g[i-][i]=; for(int i=;i<=n;i++)f[][i].one(),f[][i]=qpow(f[][i-],);
for(int i=;i<=;i++)
for(int j=;j<=n;j++)f[i][j]=f[i-][j]*f[][j];
dp[].one();
for(int i=;i<=n;i++){
matrix now=f[s[i]-''][];
for(int j=i-;j>=;j--){
dp[i]=dp[i]+dp[j]*now;
if(j)now=now*f[s[j]-''][i-j];
}
}
}
int main(){
scanf("%s%d",s+,&m);n=strlen(s+);
solve();
printf("%d\n",dp[n].g[][]);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ4037:[HAOI2015]数字串拆分——题解的更多相关文章

  1. bzoj4037 [HAOI2015]数字串拆分

    Description 你有一个长度为n的数字串.定义f(S)为将S拆分成若干个1~m的数的和的方案数,比如m=2时,f(4)=5,分别为4=1+1+1+1你可以将这个数字串分割成若干个数字(允许前导 ...

  2. [HAOI2015]数字串拆分

    题目描述 你有一个长度为n的数字串.定义f(S)为将S拆分成若干个1~m的数的和的方案数,比如m=2时,f(4)=5,分别为4=1+1+1+1你可以将这个数字串分割成若干个数字(允许前导0),将他们加 ...

  3. 洛谷3176 [HAOI2015]数字串拆分 (矩阵乘法+dp)

    qwq真的是一道好题qwq自己做基本是必不可能做出来的. 首先,如果这个题目只是求一个\(f\)数组的话,那就是一道裸题. 首先,根据样例 根据题目描述,我们能发现其实同样数字的不同排列,也是属于不同 ...

  4. BZOJ 4037 [HAOI2015]数字串拆分 ——动态规划

    拆分的情况下,发现f数组本身并不是很好递推. 因为f(123)=f(123)/f(12+3)/f(1+2+3). 然后考虑f可以怎么表示f(n)=a0*M^n M为转移矩阵. 然后发现 f(x+y)= ...

  5. bzoj 4037: [HAOI2015]数字串拆分【dp+矩阵加速】

    首先f长得就很像能矩阵优化的,先构造转移矩阵(这里有一点神奇的地方,我看网上的blog和我构造的矩阵完全不一样还以为我的构造能力又丧失了,后来惊奇的发现我把那篇blog里的构造矩阵部分换成我的构造方式 ...

  6. loj#2128. 「HAOI2015」数字串拆分 矩阵乘法

    目录 题目链接 题解 代码 题目链接 loj#2128. 「HAOI2015」数字串拆分 题解 \(f(s)\)对于\(f(i) = \sum_{j = i - m}^{i - 1}f(j)\) 这个 ...

  7. 【LOJ】#2128. 「HAOI2015」数字串拆分

    题解 题中给的函数可以用矩阵快速幂递推 我们记一个数组dp[i](这个数组每个元素是一个矩阵)表示从1到i所有的数字经过拆分矩阵递推的加和 转移方法是 \(dp[i] = \sum_{j = 0}^{ ...

  8. 解决 PHPExcel 长数字串显示为科学计数

    解决 PHPExcel 长数字串显示为科学计数 在excel中如果在一个默认的格中输入或复制超长数字字符串,它会显示为科学计算法,例如身份证号码,解决方法是把表格设置文本格式或在输入前加一个单引号. ...

  9. Openjudge 1.13-40 提取数字串按数值排序

    40:提取数字串按数值排序 查看 总时间限制:  1000ms 内存限制:  65536kB 描述 给定一个字符串,请将其中的所有数字串提取,并将每个数字串作为整数看待(假设可以用int 表示),按从 ...

随机推荐

  1. Siki_Unity_4-4_丛林战争_Socket/TCP网络游戏开发

    Unity 4-4 丛林战争(Socket/TCP网络游戏开发) 任务1:素材.演示.Prerequisite 使用c#的有关TCP的底层API进行服务器端的开发(直接通过socket进行通信) 功能 ...

  2. node安装和npm全局配置

    本文章环境 windows10 64位家庭版 Node10.15.3LTS 安装包下载 Node官网 安装node 点击安装文件, 一键安装, 注意安装位置和添加到环境变量(xx to PATH)选项 ...

  3. 《Redis设计与实现》阅读笔记(三)--链表

    链表 定义 链表分为两部分,链表节点和持有链表的list结构. 每个链表节点包含前置节点指针,后置节点指针,节点值void*用于保存各种不同类型的值 list结构包含表头节点指针,表尾节点指针,节点数 ...

  4. 《how tomcat works》阅读笔记 - 2 - 门面设计模式,避免强制转换

    在第二章 2.3节中 try { servlet = (Servlet) myClass.newInstance(); servlet.service((ServletRequest) request ...

  5. Go的CSP并发模型

    golang的goroutine机制:        一.go 内部有三个对象: P对象(processor) 代表上下文(或者可以认为是cpu),M(work thread)代表工作线程,G对象(g ...

  6. 高可用OpenStack(Queen版)集群-2.基础服务

    参考文档: Install-guide:https://docs.openstack.org/install-guide/ OpenStack High Availability Guide:http ...

  7. 【NLP】彻底搞懂BERT

    # 好久没更新博客了,有时候随手在本上写写,或者Evernote上记记,零零散散的笔记带来零零散散的记忆o(╥﹏╥)o..还是整理到博客上比较有整体性,也方便查阅~ 自google在2018年10月底 ...

  8. Nginx中server_name 参数详解

    Nginx中的server_name指令主要用于配置基于名称的虚拟主机,server_name指令在接到请求后的匹配顺序分别为: 1.准确的server_name匹配,例如: server { lis ...

  9. java内存结构JVM——java内存模型JMM——java对象模型JOM

    JVM内存结构 Java代码是要运行在虚拟机上的,而虚拟机在执行Java程序的过程中会把所管理的内存划分为若干个不同的数据区域,这些区域都有各自的用途.其中有些区域随着虚拟机进程的启动而存在,而有些区 ...

  10. iOS软件"一天八杯水“app开发过程

    作为一个ios系统测试者和app外观设计者.我们首先要了解iOS系统的开发工具和资源.xcode和iOS sdk作为一个免费的开发环境值得我们去学习和了解.interface builder提供创建了 ...