BZOJ4037:[HAOI2015]数字串拆分——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4037
你有一个长度为n的数字串。定义f(S)为将S拆分成若干个1~m的数的和的方案数,比如m=2时,f(4)=5。
你可以将这个数字串分割成若干个数字(允许前导0),将他们加起来,求f,并求和。比如g(123)=f(1+2+3)+f(1+23)+f(12+3)+f(123)。
已知字符串和m后求答案对998244353(7*17*223+1,一个质数)取模后的值。
神仙?(亦或是我从来没见过如此神奇的快速幂于是强行神仙?)
参考:https://blog.csdn.net/H_Anonymity/article/details/78348610
$f$数组一个矩乘快速幂求出,然而并没有卵用。
我们令$f[i]$矩乘所需要的矩阵为$h[i]$。
考虑使用dp求$g$,按位考虑,我们每次加上这位所能带来的贡献。
……或者说,乘上?因为$f(x1+x2)=$初始矩阵$*h[x1]*h[x2]$。
于是令$dp[i]$表示前$i$位的求$g$矩阵,则我们有:
$dp[i]=\sum_{j=0}^{i-1}dp[j]*M_j$,其中$M_j=h[j+1$至$i$字符组成的数$]$。
为了求出$M$,我们可以求$f[i][j]$表示$h[i*10^j]$这样我们就能很快捷的求出来了。
听说这个就是神奇的十进制快速幂??
#include<queue>
#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int p=;
const int L=;
char s[L];
int n,m;
struct matrix{
ll g[][];
matrix(){
memset(g,,sizeof(g));
}
inline void one(){
for(int i=;i<m;i++)g[i][i]=;
}
matrix operator *(const matrix &b)const{
matrix c;
for(int i=;i<m;i++)
for(int j=;j<m;j++)
for(int k=;k<m;k++)
(c.g[i][j]+=g[i][k]*b.g[k][j]%p)%=p;
return c;
}
matrix operator +(const matrix &b)const{
matrix c;
for(int i=;i<m;i++)
for(int j=;j<m;j++)
c.g[i][j]=(g[i][j]+b.g[i][j])%p;
return c;
}
}f[][L],dp[L];
matrix qpow(matrix x,ll y){
matrix res;res.one();
while(y){
if(y&)res=res*x;
x=x*x;y>>=;
}
return res;
}
void solve(){
f[][].one();
for(int i=;i<m;i++)f[][].g[i][]=;
for(int i=;i<m;i++)f[][].g[i-][i]=; for(int i=;i<=n;i++)f[][i].one(),f[][i]=qpow(f[][i-],);
for(int i=;i<=;i++)
for(int j=;j<=n;j++)f[i][j]=f[i-][j]*f[][j];
dp[].one();
for(int i=;i<=n;i++){
matrix now=f[s[i]-''][];
for(int j=i-;j>=;j--){
dp[i]=dp[i]+dp[j]*now;
if(j)now=now*f[s[j]-''][i-j];
}
}
}
int main(){
scanf("%s%d",s+,&m);n=strlen(s+);
solve();
printf("%d\n",dp[n].g[][]);
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
BZOJ4037:[HAOI2015]数字串拆分——题解的更多相关文章
- bzoj4037 [HAOI2015]数字串拆分
Description 你有一个长度为n的数字串.定义f(S)为将S拆分成若干个1~m的数的和的方案数,比如m=2时,f(4)=5,分别为4=1+1+1+1你可以将这个数字串分割成若干个数字(允许前导 ...
- [HAOI2015]数字串拆分
题目描述 你有一个长度为n的数字串.定义f(S)为将S拆分成若干个1~m的数的和的方案数,比如m=2时,f(4)=5,分别为4=1+1+1+1你可以将这个数字串分割成若干个数字(允许前导0),将他们加 ...
- 洛谷3176 [HAOI2015]数字串拆分 (矩阵乘法+dp)
qwq真的是一道好题qwq自己做基本是必不可能做出来的. 首先,如果这个题目只是求一个\(f\)数组的话,那就是一道裸题. 首先,根据样例 根据题目描述,我们能发现其实同样数字的不同排列,也是属于不同 ...
- BZOJ 4037 [HAOI2015]数字串拆分 ——动态规划
拆分的情况下,发现f数组本身并不是很好递推. 因为f(123)=f(123)/f(12+3)/f(1+2+3). 然后考虑f可以怎么表示f(n)=a0*M^n M为转移矩阵. 然后发现 f(x+y)= ...
- bzoj 4037: [HAOI2015]数字串拆分【dp+矩阵加速】
首先f长得就很像能矩阵优化的,先构造转移矩阵(这里有一点神奇的地方,我看网上的blog和我构造的矩阵完全不一样还以为我的构造能力又丧失了,后来惊奇的发现我把那篇blog里的构造矩阵部分换成我的构造方式 ...
- loj#2128. 「HAOI2015」数字串拆分 矩阵乘法
目录 题目链接 题解 代码 题目链接 loj#2128. 「HAOI2015」数字串拆分 题解 \(f(s)\)对于\(f(i) = \sum_{j = i - m}^{i - 1}f(j)\) 这个 ...
- 【LOJ】#2128. 「HAOI2015」数字串拆分
题解 题中给的函数可以用矩阵快速幂递推 我们记一个数组dp[i](这个数组每个元素是一个矩阵)表示从1到i所有的数字经过拆分矩阵递推的加和 转移方法是 \(dp[i] = \sum_{j = 0}^{ ...
- 解决 PHPExcel 长数字串显示为科学计数
解决 PHPExcel 长数字串显示为科学计数 在excel中如果在一个默认的格中输入或复制超长数字字符串,它会显示为科学计算法,例如身份证号码,解决方法是把表格设置文本格式或在输入前加一个单引号. ...
- Openjudge 1.13-40 提取数字串按数值排序
40:提取数字串按数值排序 查看 总时间限制: 1000ms 内存限制: 65536kB 描述 给定一个字符串,请将其中的所有数字串提取,并将每个数字串作为整数看待(假设可以用int 表示),按从 ...
随机推荐
- Go语言2
Go语言特点: 类型检查:编译时 运行环境:编译成机器代码直接运行 编程范式:面向接口,函数式编程,并发编程 Go并发编程 采用CSP(Communication Sequenication Proc ...
- [Processing]在画布上写文本
准备工作 这一步只是我强迫症犯了哈,这个随意,画几根线而已.每一小格10个像素,中格50,大格100像素 void setup() { size(,); } void draw() { backgro ...
- 2018NOIP爆0记第二弹之day1
出门进了电梯 白底黑字的告示上只有一句话 善待你一生. 湖上的白天鹅和白鹭远远厮混成一点,抱着玻璃杯里装着的小菊花,又慢悠悠溜达去了实验楼. t1 原本写过原题,结果考场上死去活来也只搞出了个nlog ...
- 基于tensorflow实现mnist手写识别 (多层神经网络)
标题党其实也不多,一个输入层,三个隐藏层,一个输出层 老样子先上代码 导入mnist的路径很长,现在还记不住 import tensorflow as tf import tensorflow.exa ...
- XSS-DVWA
1.反射型 LOW: 没有过滤,直接键入PAYLOAD 查看源码 这里没有任何过滤,使用htmlspecialchars()过滤 结果不弹窗 MEDIUM: LOW等级的方法不奏效了 观察输出可能是过 ...
- Annotation 使用备忘2
title: Annotation 使用备忘 date: 2018-01-02 20:48:43 tags: [Annotation] categories: [Programming,Java] - ...
- Python20 - Day09
python并发编程之多线程理论 1.什么是线程? 进程只是用来把资源集中到一起(进程是一个资源单位,或者说资源集合),而线程才是cpu上的执行单位. 多线程(多个控制线程)的概念是,在一个进程中存在 ...
- 一次ajax调用,发送了两次请求(一次为请求方法为option,一次为正常请求)
在项目了开发时遇见一个奇怪的现象,就是我在js里面发送一次ajax请求,在浏览器network那边查询到的却是发送了两次请求,第一次的Request Method参数为OPTIONS,第二次的Requ ...
- 为什么你学过Java却忘光了——记第一次助教同学见面会
大约两周之前,主讲老师刘志勇老师和我约定,让我上周四到课堂上和同学们认识.交流一下.一开始我不太明了去和大家见面要说些什么,也不太理解这么做的必要性是什么.但随着日子临近,我请教了周筠老师,周筠老师和 ...
- Task 6.2冲刺会议九 /2015-5-22
今天把之前的跳转问题加以改正并加以优化.遇到的主要问题是跳转的时后时间有点长,以为没有成功.之后查资料说是端口没有及时释放,导致了程序的滞缓.明天要继续把程序的界面进行优化.