BZOJ2800 [Poi2012]Leveling Ground 【扩展欧几里得 + 三分 + 堆】
题目链接
题解
区间加极难操作,差分之后可转化为两点一加一减
那么现在问题就将每个点暂时独立开来
先判定每个点是否被\((A,B)\)整除,否则无解
之后我们先将\(A,B\)化为互质,所有数除一个\((A,B)\)
求得
\]
那么对于点\(d[i]\),满足
\]
其中\(k\)可以取任意值
我们对于单点的目标,是最小化
\]
两个绝对值相加是一个单峰函数,利用三分法即可得出\(k\)
从而得到每个点目前最优解\(X[i] = xd[i] + kB,Y[i] = yd[i] - kA\)
但是我们做到了单个点最优,但整体不一定合法,我们必须满足正负操作次数相同
即
\]
而由于\(\sum d[i] = 0\)
故我们只需保证\(T = \sum X[i] = 0\)
显然我们只需改变\(\frac{T}{B}\)次
对于每个\(X[i]\)我们计算出它改变一次的代价,用一个堆维护即可
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#define REP(i,n) for (register int i = 1; i <= (n); i++)
#define cls(s) memset(s,0,sizeof(s))
#define LL long long int
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
struct pr{LL v,i;};
inline bool operator <(const pr& a,const pr& b){
return a.v > b.v;
}
priority_queue<pr> q;
LL n,A,B,X,Y,d[maxn],h[maxn],xx[maxn],yy[maxn],dd;
void exgcd(LL a,LL b,LL& d,LL& x,LL& y){
if (!b){d = a; x = 1; y = 0;}
else exgcd(b,a % b,d,y,x),y -= (a / b) * x;
}
inline LL cost(int i,LL k){
return abs(X * d[i] + k * B) + abs(Y * d[i] - k * A);
}
void workmin(){
REP(i,n){
LL l = -INF,r = INF,lmid,rmid,L,R,K;
while (r - l >= 3){
lmid = (l + l + r) / 3;
rmid = (r + l + r) / 3;
L = cost(i,lmid);
R = cost(i,rmid);
if (L == R){
if (cost(i,lmid - 1) < L) r = rmid;
else l = lmid;
}
else if (L > R) l = lmid;
else r = rmid;
}
K = l;
for (int j = l + 1; j <= r; j++)
if (cost(i,j) < cost(i,K)) K = j;
xx[i] = X * d[i] + K * B;
yy[i] = Y * d[i] - K * A;
}
}
inline LL price(int i){
return abs(yy[i] - dd * A) + abs(xx[i] + dd * B) - abs(xx[i]) - abs(yy[i]);
}
void print(){
//REP(i,n) printf("(%lld,%lld)\n",xx[i],yy[i]); puts("");
LL ans = 0;
REP(i,n) ans += abs(xx[i]) + abs(yy[i]);
printf("%lld\n",ans >> 1);
}
void workok(){
LL sum = 0;
REP(i,n) sum += xx[i];
sum /= B;
dd = sum > 0 ? -1 : 1; sum = abs(sum);
REP(i,n) q.push((pr){price(i),i});
pr u;
while (sum--){
u = q.top(); q.pop();
xx[u.i] += dd * B;
yy[u.i] -= dd * A;
q.push((pr){price(u.i),u.i});
}
}
int main(){
n = read(); A = read(); B = read(); LL D;
exgcd(A,B,D,X,Y); A /= D; B /= D;
REP(i,n){
h[i] = read();
if (h[i] % D){puts("-1"); return 0;}
h[i] /= D; d[i] = h[i] - h[i - 1];
}
n++;
d[n] = -h[n - 1];
workmin();
workok();
print();
return 0;
}
BZOJ2800 [Poi2012]Leveling Ground 【扩展欧几里得 + 三分 + 堆】的更多相关文章
- [zoj3593]扩展欧几里得+三分
题意:给一个数A,有6种操作,+a,-a,+b,-b,+(a+b),-(a+b),每次选择一种,用最少的次数变成B. 思路:由于不同的操作先后顺序对最后的结果没有影响,并且加一个数与减一个相同的数不能 ...
- Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)
http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...
- UVA 12169 Disgruntled Judge 枚举+扩展欧几里得
题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...
- UVA 10090 Marbles 扩展欧几里得
来源:http://www.cnblogs.com/zxhl/p/5106678.html 大致题意:给你n个球,给你两种盒子.第一种盒子每个盒子c1美元,可以恰好装n1个球:第二种盒子每个盒子c2元 ...
- POJ 1061 青蛙的约会 扩展欧几里得
扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...
- 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】
Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...
- poj 2891 扩展欧几里得迭代解同余方程组
Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...
- poj 2142 扩展欧几里得解ax+by=c
原题实际上就是求方程a*x+b*y=d的一个特解,要求这个特解满足|x|+|y|最小 套模式+一点YY就行了 总结一下这类问题的解法: 对于方程ax+by=c 设tm=gcd(a,b) 先用扩展欧几里 ...
- poj 1061 扩展欧几里得解同余方程(求最小非负整数解)
题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...
随机推荐
- POJ--3279(开关问题2个不同时间写的代码)
Fliptile Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 19730 Accepted: 7118 Descrip ...
- 【CodeForces-1041C】Coffee Break(二分解决关于set,pair,upper_bound用法)
//题意:一个的工作时间是m分钟. // 在特定的时间和咖啡 n a1,a2....an,, ai代表的是每个咖啡要在一天中对应的时间点喝掉 // 每一次喝咖啡的时间为1分钟 // 必须在一天中的ai ...
- 经典的性能优化最佳实践 web性能权威指南 读书笔记
web性能权威指南 page 203 经典的性能优化最佳实践 无论什么网络,也不管所用网络协议是什么版本,所有应用都应该致力于消除或减 少不必要的网络延迟,将需要传输的数据压缩至最少.这两条标准是经典 ...
- 高可用OpenStack(Queen版)集群-3.高可用配置(pacemaker&haproxy)
参考文档: Install-guide:https://docs.openstack.org/install-guide/ OpenStack High Availability Guide:http ...
- VirtualBox共享文件夹 Windows 7 (宿主机) + Ubuntu 12.04
1 安装增强功能包1.1 运行Ubuntu并登陆,菜单“设备”->“安装增强功能包(Install Guest Additions)”ubun1.2 桌面上会多出一个光盘图标,光盘默认自动加载到 ...
- 黑客攻防web安全实战详解笔记
如有不足,欢迎指出,谢谢! ----------------------------------------- 1,url传值 GET传值:其传递的值会附加到url上 POST传值:其传递的值不会加 ...
- MegaCli64/MegaCli命令详解
基础命令学习目录首页 MegaCli64 -LDInfo -Lall -aALL这个命令能看到RAID的状态MegaCli64 -LDSetProp ForcedWB -L0 -a0MegaCli64 ...
- Node of C++ Linker.
code is nothing without data. data segment - the program memory storing initialized global variable. ...
- Redux和React-Redux的实现(二):Provider组件和connect的实现
接着上一篇讲,上一篇我们实现了自己的Redux和介绍了React的context以及Provider的原理. 1. Provider组件的实现 Provider组件主要有以下下两个作用 在整个应用上包 ...
- DataRow对象的RowState和DataRowVersion属性特点
DataRow对象有两个比较重要的属性,分别是行状态(RowState)和行版本(DataRowVersion),通过这两个属性能够有效的管理表中的行.下面简要的介绍一下行状态和行版本的特点和关系. ...