【BZOJ1041】圆上的整点(数论)

题面

BZOJ

洛谷

题解

好神仙的题目啊。

安利一个视频,大概是第\(7\)到\(19\)分钟的样子

因为要质因数分解,所以复习了一下\(Pollard\_rho\)

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
int n,ans=1;
int fpow(int a,int b,int MOD)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
bool Miller_Rabin(int n)
{
if(n==2)return true;
for(int tim=10;tim;--tim)
{
int a=rand()%(n-2)+2,p=n-1;
if(fpow(a,p,n)!=1)return false;
while(!(p&1))
{
p>>=1;int nw=fpow(a,p,n);
if(1ll*nw*nw%n==1&&nw!=1&&nw!=n-1)return false;
}
}
return true;
}
vector<int> fac;
int Pollard_rho(int n,int c)
{
int i=0,k=2,x=rand()%(n-1)+1,y=x;
while(233)
{
++i;x=(1ll*x*x%n+c)%n;
int d=__gcd((y-x+n)%n,n);
if(d!=1&&d!=n)return d;
if(x==y)return n;
if(i==k)y=x,k<<=1;
}
}
void Fact(int n,int c)
{
if(n==1)return;
if(Miller_Rabin(n)){fac.push_back(n);return;}
int p=n;while(p>=n)p=Pollard_rho(p,c--);
Fact(p,c);Fact(n/p,c);
}
int main()
{
cin>>n;Fact(n,233);sort(fac.begin(),fac.end());
for(int i=0,l=fac.size(),pos;i<l;i=pos+1)
{
int cnt=1;
pos=i;while(pos<l-1&&fac[i]==fac[pos+1])++pos,++cnt;
if(fac[i]==2)continue;
if(fac[i]%4==1)ans=ans*(cnt*2+1);
}
printf("%d\n",ans*4);
return 0;
}

【BZOJ1041】圆上的整点(数论)的更多相关文章

  1. 【bzoj1041】[HAOI2008]圆上的整点 数论

    题目描述 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 输入 只有一个正整数n,n<=2000 000 000 输出 整点个数 样例输入 4 样例输出 4 题解 数 ...

  2. BZOJ1041:[HAOI2008]圆上的整点(数论)

    Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...

  3. bzoj1041 圆上的整点 数学

    题目传送门 题目大意:求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 思路:没思路,看大佬的博客(转载自https://blog.csdn.net/csyzcyj),转载只 ...

  4. [BZOJ1041]圆上的整点

    嗯... 自己看视频讲解? >Click Here< #include<cstdio> #include<queue> #include<iostream&g ...

  5. 【BZOJ1041】[HAOI2008]圆上的整点

    [BZOJ1041][HAOI2008]圆上的整点 题面 bzoj 洛谷 题解 不妨设\(x>0,y>0\) \[ x^2+y^2=r^2\\ y^2=(x+r)(x-r) \] 设\(r ...

  6. 2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ π )

    2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ \(\pi\) ) https://www.luogu.com.cn/problem/P2508 题意: 求一个给定的圆 \( ...

  7. BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4210  Solved: 1908[Submit][Sta ...

  8. bzoj千题计划127:bzoj1041: [HAOI2008]圆上的整点

    http://www.lydsy.com/JudgeOnline/problem.php?id=1041 设 X>0 ,Y>0 X^2 + Y^2 = R^2 X^2 = R^2-Y^2 ...

  9. BZOJ1041 [HAOI2008]圆上的整点 【数学】

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 4631  Solved: 2087 [Submit][S ...

随机推荐

  1. C#单例模式初识

    设计模式之单例模式 定义: 确保一个类只有一个实例,而且自行实例化并向整个系统提供这个实例. 要素: 私有的构造函数(防止外部实例化) 指向自己实例的私有静态引用 以自己实例为返回值的静态公有方法或者 ...

  2. 009--EXPLAIN用法和结果分析

    在日常工作中,我们会有时会开慢查询去记录一些执行时间比较久的SQL语句,找出这些SQL语句并不意味着完事了,些时我们常常用到explain这个命令来查看一个这些SQL语句的执行计划,查看该SQL语句有 ...

  3. Harbor 学习分享系列4 - Harbor常用功能实验

    前言 本文为Harbor技术分享系列的第4部分也是初级部分的完结篇,下个阶段作者将会进阶分享,更多详细的内容将会将会在文中介绍. 云盘链接 链接:https://pan.baidu.com/s/1PT ...

  4. 开发简单的IO多路复用web框架

    自制web框架 1.核心IO多路复用部分 # -*- coding:utf-8 -*- import socket import select class Snow(): def __init__(s ...

  5. (第七周)评论alpha发布

    本人所在组:奋斗吧兄弟 按课上展示组的顺序对其他组进行点评: 1.  新蜂 项目:游戏俄罗斯方块 界面完善,已经实现了游戏的基本功能.可以对图形进行变换形状,进行位置移动,可以加快下落的速度,并对一整 ...

  6. Daily Scrum (2015/10/23)

    这天晚上PM和我一起细算下来这周的确做了不少事儿.由于这天是周五,有的组员今晚有外出活动,有的组员忙了一周想休息一下.所以PM与我讨论提出今晚就布置些阅读的任务,给组员们一些自由分配的时间: 成员 今 ...

  7. Scrum Meeting 11.03

    成员 今日任务 明日计划 用时 徐越 休息     赵庶宏 编写功能说明书,servlet代码移植 servlet代码移植 3h 薄霖 阅读上一届相关代码,思考改进方法 学习安卓界面设计数据库管理 4 ...

  8. java实验三实验报告

    一.实验内容 1. XP基础 2. XP核心实践 3. 相关工具 二.实验过程(本次试验是在自己电脑上完成,没有使用实验楼) (一)敏捷开发与XP 1.XP是以开发符合客户需要的软件为目标而产生的一种 ...

  9. Task 7 买书最低价格问题

    任务: 书店针对<哈利波特>系列书籍进行促销活动,一共5卷,用编号0.1.2.3.4表示,单独一卷售价8元, 具体折扣如下所示: 本数    折扣 2         5% 3       ...

  10. 《Spring2之站立会议9》

    <Spring2之站立会议9> 昨天,添加了注册界面: 今天,添加了表情库: 遇到的问题:由于资源有限,感觉设计的不完美并且途中也遇到了好多问题.