【BZOJ1041】圆上的整点(数论)

题面

BZOJ

洛谷

题解

好神仙的题目啊。

安利一个视频,大概是第\(7\)到\(19\)分钟的样子

因为要质因数分解,所以复习了一下\(Pollard\_rho\)

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
int n,ans=1;
int fpow(int a,int b,int MOD)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
bool Miller_Rabin(int n)
{
if(n==2)return true;
for(int tim=10;tim;--tim)
{
int a=rand()%(n-2)+2,p=n-1;
if(fpow(a,p,n)!=1)return false;
while(!(p&1))
{
p>>=1;int nw=fpow(a,p,n);
if(1ll*nw*nw%n==1&&nw!=1&&nw!=n-1)return false;
}
}
return true;
}
vector<int> fac;
int Pollard_rho(int n,int c)
{
int i=0,k=2,x=rand()%(n-1)+1,y=x;
while(233)
{
++i;x=(1ll*x*x%n+c)%n;
int d=__gcd((y-x+n)%n,n);
if(d!=1&&d!=n)return d;
if(x==y)return n;
if(i==k)y=x,k<<=1;
}
}
void Fact(int n,int c)
{
if(n==1)return;
if(Miller_Rabin(n)){fac.push_back(n);return;}
int p=n;while(p>=n)p=Pollard_rho(p,c--);
Fact(p,c);Fact(n/p,c);
}
int main()
{
cin>>n;Fact(n,233);sort(fac.begin(),fac.end());
for(int i=0,l=fac.size(),pos;i<l;i=pos+1)
{
int cnt=1;
pos=i;while(pos<l-1&&fac[i]==fac[pos+1])++pos,++cnt;
if(fac[i]==2)continue;
if(fac[i]%4==1)ans=ans*(cnt*2+1);
}
printf("%d\n",ans*4);
return 0;
}

【BZOJ1041】圆上的整点(数论)的更多相关文章

  1. 【bzoj1041】[HAOI2008]圆上的整点 数论

    题目描述 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 输入 只有一个正整数n,n<=2000 000 000 输出 整点个数 样例输入 4 样例输出 4 题解 数 ...

  2. BZOJ1041:[HAOI2008]圆上的整点(数论)

    Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...

  3. bzoj1041 圆上的整点 数学

    题目传送门 题目大意:求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 思路:没思路,看大佬的博客(转载自https://blog.csdn.net/csyzcyj),转载只 ...

  4. [BZOJ1041]圆上的整点

    嗯... 自己看视频讲解? >Click Here< #include<cstdio> #include<queue> #include<iostream&g ...

  5. 【BZOJ1041】[HAOI2008]圆上的整点

    [BZOJ1041][HAOI2008]圆上的整点 题面 bzoj 洛谷 题解 不妨设\(x>0,y>0\) \[ x^2+y^2=r^2\\ y^2=(x+r)(x-r) \] 设\(r ...

  6. 2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ π )

    2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ \(\pi\) ) https://www.luogu.com.cn/problem/P2508 题意: 求一个给定的圆 \( ...

  7. BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4210  Solved: 1908[Submit][Sta ...

  8. bzoj千题计划127:bzoj1041: [HAOI2008]圆上的整点

    http://www.lydsy.com/JudgeOnline/problem.php?id=1041 设 X>0 ,Y>0 X^2 + Y^2 = R^2 X^2 = R^2-Y^2 ...

  9. BZOJ1041 [HAOI2008]圆上的整点 【数学】

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 4631  Solved: 2087 [Submit][S ...

随机推荐

  1. 详细介绍redis的集群功能,带你了解真正意义上的分布式

    Redis 集群是一个分布式(distributed).容错(fault-tolerant)的 Redis 实现, 集群可以使用的功能是普通单机 Redis 所能使用的功能的一个子集(subset). ...

  2. __construct 与 __destruct 区别

    其实这个问法是有问题的,__construct 与 __destruct 没什么可比性,两个方法一个在对象被创建的时候触发,另一个在对象被销毁的时候触发 具体可以翻阅PHP官方手册中的 http:// ...

  3. Mysql数据库的隔离级别

    Mysql数据库的隔离级别有四种 1.read umcommitted   读未提交(当前事务可以读取其他事务没提交的数据,会读取到脏数据) 2.read committed 读已提交(当前事务不能读 ...

  4. nodejs 几篇有用的文章

    深入浅出Node.js(三):深入Node.js的模块机制 http://www.infoq.com/cn/articles/nodejs-module-mechanism Node.js简单介绍并实 ...

  5. 7行Python代码的人脸识别

    随着去年alphago 的震撼表现,AI 再次成为科技公司的宠儿.AI涉及的领域众多,图像识别中的人脸识别是其中一个有趣的分支.百度的BFR,Face++的开放平台,汉王,讯飞等等都提供了人脸识别的A ...

  6. JDK8 metaspace调优

    从JDK8开始,永久代(PermGen)的概念被废弃掉了,取而代之的是一个称为Metaspace的存储空间.Metaspace使用的是本地内存,而不是堆内存,也就是说在默认情况下Metaspace的大 ...

  7. 一次ajax调用,发送了两次请求(一次为请求方法为option,一次为正常请求)

    在项目了开发时遇见一个奇怪的现象,就是我在js里面发送一次ajax请求,在浏览器network那边查询到的却是发送了两次请求,第一次的Request Method参数为OPTIONS,第二次的Requ ...

  8. ahk打印成pdf记录

    软工课程后记: 要求将博客打印成pdf存档.为了偷懒,不想自己点鼠标一个个保存,所以写了一个ahk小程序.博客教程推荐,建议一试,不难.还很方便.我也只学了点点皮毛,满足需求即止. 第一个成功的小例子 ...

  9. 2017秋软工 - 本周PSP

    1. PSP 2. PSP饼状图 3. 进度条 4. 累计进度图

  10. Notes of Daily Scrum Meeting(11.15)

    Notes of Daily Scrum Meeting(11.15) 今天周六我们的主要工作是把这周落下的一些工作补回来,这是写程序的最后阶段,准备进入测试阶段了,所以之前的工作 要补齐,今天大家的 ...