51nod 1589 移数博弈 | 基数排序(ノಠ益ಠ)ノ彡┻━┻
51nod 1589 移数博弈
题面
给出一个序列a,长度 n <= 10^7, a[i] <= 10^7
求每个长度 >= 2 的区间的最大值*次大值 之和。
题解
主要思路是求每个元素作为次大值做了多少贡献。
对于一个元素 a[i], 设从i向左走能找到的第一个比a[i]大的位置为l[i], 第二个比a[i]大的位置为ll[i], 向右走能找到的第一个比a[i]大的位置为r[i], 第二个为rr[i]。
a[i]作为次大值的时候,区间最大值要么是a[l[i]], 要么是a[r[i]]。

如上图(竖直柱表示不同大小的数,之前未画出的均比a[i]小),若a[l[i]]是最大值,那么区间左、右端点应分别在橙色区间的两部分中;否则应该在紫色区间的两部分中。
对应计算区间数量求贡献即可。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
}
const int N = 1e7 + 5, P = 1e9 + 7;
int n, A, B, p, a[N], b[N], cnt[N], pre[N], nxt[N];
ll ans;
//b[i]是a中排名第i的元素的位置
int main(){
read(n), read(a[0]), read(A), read(B), read(p);
for(int i = 1; i <= n; i++)
a[i] = ((ll)a[i - 1] * A + B) % p, cnt[a[i]]++;
a[0] = 0;
for(int i = 1; i <= 1e7; i++)
cnt[i] += cnt[i - 1];
for(int i = n; i; i--)
b[cnt[a[i]]--] = i;
for(int i = 0; i <= n + 1; i++)
pre[i] = i - 1, nxt[i] = i + 1;
pre[0] = 0, nxt[n + 1] = n + 1;
for(int i = 1; i <= n; i++){
ans = (ans + (ll) a[b[i]] * a[pre[b[i]]] % P
* (pre[b[i]] - pre[pre[b[i]]]) % P
* (nxt[b[i]] - b[i]) % P) % P;
ans = (ans + (ll) a[b[i]] * a[nxt[b[i]]] % P
* (nxt[nxt[b[i]]] - nxt[b[i]]) % P
* (b[i] - pre[b[i]]) % P) % P;
pre[nxt[b[i]]] = pre[b[i]];
nxt[pre[b[i]]] = nxt[b[i]];
}
write(ans), putchar('\n');
return 0;
}
51nod 1589 移数博弈 | 基数排序(ノಠ益ಠ)ノ彡┻━┻的更多相关文章
- 51nod 1589 移数博弈【桶排序+链表】
1589 移数博弈 基准时间限制:1 秒 空间限制:262144 KB 分值: 80 难度:5级算法题 小A和小B在玩一个游戏. 他们拥有一个数列. 小A在该数列中选择出最大的那个数,然后移出该数 ...
- 51Nod 算法马拉松12 移数博弈
点进去发现并不是博弈QAQ 一开始考虑单调队列什么乱七八糟的发现根本做不出来 (没错我一直在想枚举最大值求次大值QAQ 不妨换个思路: 我们考虑枚举次大值求最大值 设当前为now, 设now之前第一个 ...
- 51Nod 1067 Bash博弈V2
这道题告诉我,一定要去尝试,去推算,不要动不动就找度娘要答案.(惭愧惭愧) 既然是博弈问题,按理我们应该找出规律,怎么找呢,推,把前几项写出来找规律,动手很重要. 上题: 1067 Bash游戏 V2 ...
- 可持久化trie 学习总结
QAQ 以前一直觉得可持久化trie很难,今天强行写了一发觉得还是蛮简单的嘛 自己的模板是自己手写的,写了几道题目并没有出过错误 THUSC的第二题的解法五貌似就是可持久化trie,时间复杂度O(60 ...
- codeforces #305 B Mike and Feet
跟之前做过的51Nod的移数博弈是一样的QAQ 我们考虑每个数的贡献 定义其左边第一个比他小的数的位置为L 定义其右边第一个比他小的数的位置为R 这个可以用排序+链表 或者 单调队列 搞定 那么对于区 ...
- 51nod算法马拉松12
A 第K大区间 不妨考虑二分答案x,则问题转化成计算有多少个区间满足众数出现的次数>=x. 那么这个问题我们使用滑动窗口,枚举右端点,则左端点肯定单调递增,然后维护一个简单的数组就能资瓷添加元素 ...
- 51nod 1766 树上的最远点对 | LCA ST表 线段树 树的直径
51nod 1766 树上的最远点对 | LCA ST表 线段树 树的直径 题面 n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间,表示点的标号请你求出两个区间内各选一点之间的最大距离,即 ...
- CSS学习笔记——定位position属性的学习
今天学习之前剩下的一个问题:CSS的position属性.首先归纳出和position相关的问题: position作为一个属性,它一共有哪几个属性值? position常用的属性值有哪几个?分别有什 ...
- [UWP小白日记-6]页面跳转过度动画
前言 在学习中发现页面导航默认是没有过度动画的,直接就导航过去太粗暴了( ̄へ ̄),于是打算上动画结果不言而喻自己进了坑完全不懂动画,然后就是各种疯狂(´・_・`)的搜索资料看了后终于有点头绪. 再后来 ...
随机推荐
- Unity中使用C#实现UDP广播
没有系统的学习过网络,想做联机游戏还真是费劲,想做在局域网内实现自动搜索服务器的功能,然后就想到了使用UDP进行广播,把服务器的信息广播给每一个玩家. Socket udpSocket = new S ...
- java基础---类加载和对象创建过程
类中可以存在的成员: class A{ 静态成员变量: 非静态成员变量: 静态函数: 非静态函数: 构造函数 A(..){...} 静态代码块 static{...} 构造代码块 {...} } 类加 ...
- OLAP和OLTP的区别
OLAP(On-Line Analytical Processing)联机分析处理,也称为面向交易的处理过程,其基本特征是前台接收的用户数据可以立即传送到计算中心进行处理,并在很短的时间内给出处理结果 ...
- ifup,ifdown命令详解
基础命令学习目录首页 原文链接:https://www.cnblogs.com/jing99/p/7881779.html ifup命令网络配置 ifup命令用于激活指定的网络接口.ifdown命令用 ...
- 将React Native 集成进现有OC项目中(过程记录) 、jsCodeLocation 生成方式总结
将RN集成到现有OC项目应该是最常见的,特别是已经有OC项目的,不太可能会去专门搞个纯RN的项目.又因为RN不同版本,引用的依赖可能不尽相同,所以特别说明下,本文参考的文档是React Native ...
- 20172321 20172333 2017-2018 暑假作业APP
20172321 20172333 2017-2018 暑假作业APP 项目介绍 项目成员 吴恒佚 20172321 严域俊 20172333 项目简介 从理论上来说,这是一个贪吃蛇游戏. <贪 ...
- 20172319 2018.04.11-16 《Java程序设计教程》 第6周学习总结
20172319 2018.04.11-16 <Java程序设计教程>第6周学习总结 目录 教材学习内容总结 教材学习中的问题和解决过程 代码调试中的问题和解决过程 代码托管 上周考试错题 ...
- webservice(二)简单实例
1.建立WSDL文件 建立WSDL的工具很多,eclipse.zendstudio.vs都可以,我个人建议自己写,熟悉结构,另外自动工具对xml schame类型支持在类型中可能会报错. 下 ...
- PHP 内置函数strlen 和mbstring扩展函数mb_strlen的区别
#EXAMPLE $str_uncode = "简体中文Chinese(Simplified)"; //统计字符串长度 echo strlen($str_uncode).'< ...
- [转帖]什么是TRIM与GC?他们是怎样让SSD保持高速的
什么是TRIM与GC?他们是怎样让SSD保持高速的 2017-7-6 15:43 | 作者:Strike | 关键字:SSD,TRIM,GC,超能课堂 分享到 SSD的写入方式决 ...