http://www.spoj.com/problems/SUBST1/ (题目链接)

题意

  求字符串的不相同的子串个数

Solution

  后缀数组论文题。

  每个子串一定是某个后缀的前缀,那么原问题等价于求所有后缀之间的不相同的前缀的个数。如果所有的后缀按照 suffix(sa[1]), suffix(sa[2]), suffix(sa[3]), …… ,suffix(sa[n])的顺序计算,不难发现,对于每一次新加进来的后缀suffix(sa[k]),它将产生n-sa[k]+1个新的前缀。但是其中有height[k]个是和前面的字符串的前缀是相同的。所以suffix(sa[k])将“贡献” 出n-sa[k]+1- height[k]个不同的子串。累加后便是原问题的答案。这个做法的时间复杂度为 O(n)。

细节

  开LL

代码

// spoj705
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<vector>
#include<cstdio>
#include<cmath>
#include<set>
#define LL long long
#define inf 1<<30
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=100010;
int sa[maxn],height[maxn],rank[maxn];
char s[maxn]; namespace Suffix {
int wa[maxn],wb[maxn],ww[maxn];
bool cmp(int *r,int a,int b,int l) {
return r[a]==r[b] && r[a+l]==r[b+l];
}
void da(char *r,int *sa,int n,int m) {
int i,j,p,*x=wa,*y=wb;
for (i=0;i<=m;i++) ww[i]=0;
for (i=1;i<=n;i++) ww[x[i]=r[i]]++;
for (i=1;i<=m;i++) ww[i]+=ww[i-1];
for (i=n;i>=1;i--) sa[ww[x[i]]--]=i;
for (p=0,j=1;p<n;j*=2,m=p) {
for (p=0,i=n-j+1;i<=n;i++) y[++p]=i;
for (i=1;i<=n;i++) if (sa[i]>j) y[++p]=sa[i]-j;
for (i=0;i<=m;i++) ww[i]=0;
for (i=1;i<=n;i++) ww[x[y[i]]]++;
for (i=1;i<=m;i++) ww[i]+=ww[i-1];
for (i=n;i>=1;i--) sa[ww[x[y[i]]]--]=y[i];
for (swap(x,y),p=x[sa[1]]=1,i=2;i<=n;i++) {
x[sa[i]]=cmp(y,sa[i-1],sa[i],j) ? p : ++p;
}
}
}
void calheight(char *r,int *sa,int n) {
for (int i=1;i<=n;i++) rank[sa[i]]=i;
for (int k=0,i=1;i<=n;i++) {
if (k) k--;
int j=sa[rank[i]-1];
while (r[i+k]==r[j+k]) k++;
height[rank[i]]=k;
}
}
}
int main() {
int T;scanf("%d",&T);
while (T--) {
scanf("%s",s+1);
int n=strlen(s+1);
Suffix::da(s,sa,n,300);
Suffix::calheight(s,sa,n);
LL ans=0;
for (int i=1;i<=n;i++) ans+=(n-sa[i]+1)-height[i];
printf("%lld\n",ans);
}
return 0;
}

【spoj SUBST1】 New Distinct Substrings的更多相关文章

  1. 【SPOJ – SUBST1】New Distinct Substrings 后缀数组

    New Distinct Substrings 题意 给出T个字符串,问每个字符串有多少个不同的子串. 思路 字符串所有子串,可以看做由所有后缀的前缀组成. 按照后缀排序,遍历后缀,每次新增的前缀就是 ...

  2. SPOJ - SUBST1 D - New Distinct Substrings

    D - New Distinct Substrings 题目大意:求一个字符串中不同子串的个数. 裸的后缀数组 #include<bits/stdc++.h> #define LL lon ...

  3. [SPOJ]DISUBSTR:Distinct Substrings&[SPOJ]SUBST1:New Distinct Substrings

    题面 Vjudge Vjudge Sol 求一个串不同子串的个数 每个子串一定是某个后缀的前缀,也就是求所有后缀不同前缀的个数 每来一个后缀\(suf(i)\)就会有,\(len-sa[i]+1\)的 ...

  4. 【 SPOJ - GRASSPLA】 Grass Planting (树链剖分+树状数组)

    54  种草约翰有 N 个牧场,编号为 1 到 N.它们之间有 N − 1 条道路,每条道路连接两个牧场.通过这些道路,所有牧场都是连通的.刚开始的时候,所有道路都是光秃秃的,没有青草.约翰会在一些道 ...

  5. SPOJ 题目705 New Distinct Substrings(后缀数组,求不同的子串个数)

    SUBST1 - New Distinct Substrings no tags  Given a string, we need to find the total number of its di ...

  6. 【Codeforces 258D】 Count Good Substrings

    [题目链接] http://codeforces.com/contest/451/problem/D [算法] 合并后的字符串一定是形如"ababa","babab&qu ...

  7. 【SPOJ 694】Distinct Substrings (更直接的求法)

    [链接]h在这里写链接 [题意] 接上一篇文章 [题解] 一个字符串所有不同的子串的个数=∑(len-sa[i]-height[i]) [错的次数] 0 [反思] 在这了写反思 [代码] #inclu ...

  8. 【SPOJ 694】Distinct Substrings

    [链接]h在这里写链接 [题意]     给你一个长度最多为1000的字符串     让你求出一个数x,这个x=这个字符串的不同子串个数; [题解]     后缀数组题.     把原串复制一份,加在 ...

  9. 【SPOJ】694. Distinct Substrings

    http://www.spoj.com/problems/DISUBSTR/ 题意:求字符串不同子串的数目. #include <bits/stdc++.h> using namespac ...

随机推荐

  1. 2.2 Oracle之DML的SQL语句之多表查询以及组函数

    一.SQL的多表查询: 1.左连接和右连接(不重要一方加(+)) SELECT e.empno,e.ename,d.deptno,d.dname,d.loc FROM emp e,dept d WHE ...

  2. shell解析ini格式文件

    功能 本脚本实现了ini文件中的查询修改指定value 百度云连接地址 链接:https://pan.baidu.com/s/12_T5yST7Y3L1H4_MkVEcvA 密码:fo5p 解压后先看 ...

  3. Linux(Contos7.5)环境搭建之JDK1.8安装(二)

    1.下载安装包 wget -p 目录 url包地址 2.解压安装包 tar -xzvf  文件 -C 指定目录 3.修改名称 mv jdk1.8.0_45 jdk1.8 4.配置环境变量 vim /e ...

  4. pycharm连接服务器

    python其他知识目录 1. pycharm当做xshell等远程工具,远程连接服务器步骤: 2.pycharm结合Linux服务器进行代码学习: 2.2使用pycharm远程在服务器上修改和执行代 ...

  5. Python序列之列表 (list)

    作者博文地址:http://www.cnblogs.com/spiritman/ 列表是Python中最基本的数据结构,是Python最常用的数据类型.Python列表是任意对象的有序集合,通过索引访 ...

  6. 随手记录-linux-常用命令

    转自:https://www.cnblogs.com/yjd_hycf_space/p/7730690.html linux目录结构:http://www.cnblogs.com/fat39/p/72 ...

  7. CocoaPods pod install的时候报错:invalid byte sequence in UTF-8 (ArgumentError)解决办法

    CocoaPods pod install的时候报错:invalid byte sequence in UTF-8 (ArgumentError)解决办法: 基本可以确定是Podfile中的内容编码有 ...

  8. js最简单的动画

    $(document).ready(function(){ //�ֶ�����ҳ��Ԫ�� $("#reset").click(function(){ $("*" ...

  9. maven实战读书笔记(一)

    环境变量设置 MAVEN_HOME:G:\maven-3.2\apache-maven-3.2.5 Path: G:\maven-3.2\apache-maven-3.2.5\bin 其实正确的设置应 ...

  10. 2018-2019-20172321 《Java软件结构与数据结构》第七周学习总结

    2018-2019-20172321 <Java软件结构与数据结构>第七周学习总结 教材学习内容总结 第11章 二叉查找树 一.概述 二叉查找树是一种含有附加属性的二叉树,该属性即其左孩子 ...