【ARC074e】RGB sequence
Description
一排\(n\)个格子,每个格子可以涂三种颜色的一种。现在给出\(m\)个形如“\([l,r]\)中必须恰好有\(x\)种颜色"的限制(\(1 \le l \le r \le n, 1 \le x \le 3\))。
求一共有多少种满足所有限制的合法涂色方案。
答案对\(10^9+7\)取模。
Solution
首先要想到状态表示法,如何表示才能适应这些限制呢?由于是限制颜色种类数,可以考虑最早出现位置这类套路。
设\(f_{i,j,k}\)表示:当前走完\(1...i\),在\(i\)左边最靠右的、与\(i\)颜色不同的位置为\(j\),在\(j\)左边最靠右的、与\(i\)和\(j\)颜色不同的位置为\(k\)时,目前合法染色方案数是多少。
逐步计算\(f_1,f_2,...\)。
接下来考虑限制。考虑在转移的时候逐一枚举限制来判断新状态是否合法。
则总复杂度是\(\mathcal O(n^3m)\)的。还有3倍常数,显然不够优秀。
然而这只是臆想做法,具体我也没实现出来,因为枚举限制的时候,限制的区间和\(i,j,k\)的位置的关系实在太多,不好写。
实际上,对于一个\([l,r]\)的限制,它只需要去管\(i==r\)的那些状态是否合法即可。如果\(i<r\),那么显然还没有考虑的必要(都没填完\([l,r]\),考虑什么呢?)。如果\(r<i\)那么已经晚了。所以每个条件至多被枚举一次。
因此总复杂度是\(\mathcal O (n^2(n+m))\)的。
所以下次觉得枚举限制条件十分复杂且时间复杂度爆炸的时候,不妨想一想限制条件或许只针对特定对象才起效果或必要,这样就可以减少总枚举次数,优化复杂度。
Code
#include <cstdio>
#include <algorithm>
#include <vector>
#define pb push_back
#define mp make_pair
using namespace std;
typedef pair<int,int> pii;
const int N=310;
const int MOD=1e9+7;
int n,m;
int f[N][N][N];
vector<pii> lis[N];
void readData(){
scanf("%d%d",&n,&m);
int l,r,x;
for(int i=1;i<=m;i++){
scanf("%d%d%d",&l,&r,&x);
lis[r].pb(mp(l,x));
}
}
void dp(){
f[1][0][0]=1;
for(int i=1;i<=n;i++){
for(int d=0,sz=lis[i].size();d<sz;d++){
int l=lis[i][d].first,x=lis[i][d].second;
for(int j=0;j<i;j++)
for(int k=0;k<=(j-(j>0));k++){
if(x==1){
if(l<=j) f[i][j][k]=0;
}
else if(x==2){
if(l<=k||j<l) f[i][j][k]=0;
}
else{
if(k<l) f[i][j][k]=0;
}
}
}
if(i==n) break;
for(int j=0;j<i;j++)
for(int k=0;k<=(j-(j>0));k++)
if(f[i][j][k]){
(f[i+1][j][k]+=f[i][j][k])%=MOD;
(f[i+1][i][k]+=f[i][j][k])%=MOD;
(f[i+1][i][j]+=f[i][j][k])%=MOD;
}
}
int ans=0;
for(int j=0;j<n;j++)
for(int k=0;k<=(j-(j>0));k++)
(ans+=f[n][j][k])%=MOD;
ans=1LL*ans*3%MOD;
printf("%d\n",ans<0?ans+MOD:ans);
}
int main(){
readData();
dp();
return 0;
}
【ARC074e】RGB sequence的更多相关文章
- 【arc074e】RGB Sequence(动态规划)
[arc074e]RGB Sequence(动态规划) 题面 atcoder 洛谷 翻译见洛谷 题解 直接考虑暴力\(dp\),设\(f[i][j][k][l]\)表示当前考虑到第\(i\)位,最后一 ...
- 【arc074e】RGB Sequence dp
Description 丰泽爷今天也在愉快地玩Minecraft! 现在丰泽爷有一块1∗N1∗N的空地,每个格子按照顺序标记为11到NN.丰泽爷想要在这块空地上铺上红石块.绿宝石块和钻石块作为 ...
- 【XSY3209】RGB Sequence
题目 传送门 解法 用\(f_{i, j, k}\)表示有\(i\)个红石块, \(j\)个绿宝石块, \(k\)个钻石块 可以转移到\(f_{p+1, j, k}\). \(f_{i, p+1,k ...
- 【arc071f】Infinite Sequence(动态规划)
[arc071f]Infinite Sequence(动态规划) 题面 atcoder 洛谷 题解 不难发现如果两个不为\(1\)的数连在一起,那么后面所有数都必须相等. 设\(f[i]\)表示\([ ...
- 【BZOJ1367】[Baltic2004]sequence 左偏树
[BZOJ1367][Baltic2004]sequence Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 18 Sampl ...
- 【BZOJ3043】IncDec Sequence 乱搞
[BZOJ3043]IncDec Sequence Description 给定一个长度为n的数列{a1,a2...an},每次可以选择一个区间[l,r],使这个区间内的数都加一或者都减一.问至少需要 ...
- 【C#】RGB,CMYK,HSB各种颜色表示的转换(转)
[C#]RGB,CMYK,HSB各种颜色表示的转换 一.表示颜色的方式有很多种,如RGB,CMYK,HSB,Hex等等 1.RGB:这种表示颜色由三原色构成,通过红,绿,蓝三种颜色分量的不同,组合 ...
- T89353 【BIO】RGB三角形
T89353 [BIO]RGB三角形 题解 对于这个题目有一个规律: 如果一个数列的长度为 3k+1(0<=k) 那么,这个数列最终缩放成的一个字母只和这个数列的首项,尾项有关 所以我们可以先 ...
- 【AGC025B】RGB Color
[AGC025B]RGB Color 题面描述 Link to Atcoder Link to Luogu Takahashi has a tower which is divided into \( ...
随机推荐
- Netty源码分析第8章(高性能工具类FastThreadLocal和Recycler)---->第1节: FastThreadLocal的使用和创建
Netty源码分析第八章: 高性能工具类FastThreadLocal和Recycler 概述: FastThreadLocal我们在剖析堆外内存分配的时候简单介绍过, 它类似于JDK的ThreadL ...
- python数据分析系列(2)--numpy
NumPy(Numerical Python的简称)是Python数值计算最重要的基础包.大多数提供科学计算的包都是用NumPy的数组作为构建基础. NumPy的部分功能如下: ndarray,一个具 ...
- vmware安装androidx86 (FreeBSD) 系统图解
有时候自己手机的一些方面限制的因素,我们需要在电脑上装一个“手机”,来完成我们想要做的事情. 安装步骤如下: 首先需要一个ISO系统镜像,下面地址可以提供大量镜像下载: https://zh.osdn ...
- 小米6x抓包小程序https请求
1. charles安装证书,手机设置代理等这里不多讲了, 请进入下面链接查看详细 https://blog.csdn.net/manypeng/article/details/79475870 2. ...
- nodejs的Cannot find module 'body-parser'
http://blog.csdn.net/u014345860/article/details/77769253
- js备忘录5
函数的全解析 原文链接: http://mp.weixin.qq.com/s?src=11×tamp=1509672643&ver=491&signature=9fD ...
- /etc/profile不生效问题
http://blog.csdn.net/cuker919/article/details/54178611
- 【Alpha】阶段第十次Scrum Meeting
[Alpha]阶段第十次Scrum Meeting 工作情况 团队成员 今日已完成任务 明日待完成任务 刘峻辰 登出接口 编写后端说明文档 赵智源 编写脚本实现测试的持续集成 前测试点页面跳转逻辑测试 ...
- 微信小程序倒计时实现
思路:跟一般js倒计时一样,主要在于this的变相传递. 实现效果: wxml文件部分代码: common.js文件 : 引用页JS文件: PS: 1.在data里初始化时间格式,是避免时间加载的第1 ...
- 在dell服务器上装windows server 2012详细解析
壹: 首先确定磁盘阵列的问题,在dell服务器开机后按住 Ctrl+R 或者 F2 会展开虚拟磁盘创建菜单 详细步骤可以查看:https://jingyan.baidu.com/article/915 ...