【模板】exBSGS/Spoj3105 Mod
【模板】exBSGS/Spoj3105 Mod
题目描述
已知数\(a,p,b\),求满足\(a^x\equiv b \pmod p\)的最小自然数\(x\)。
输入输出格式
输入格式:
每个测试文件中最多包含\(100\)组测试数据。
每组数据中,每行包含\(3\)个正整数\(a,p,b\)。
当\(a=p=b=0\)时,表示测试数据读入完全。
输出格式:
对于每组数据,输出一行。
如果无解,输出No Solution
(不含引号),否则输出最小自然数解。
BSGS
若\(A \perp p\),那么\(\{A^x,x\le \varphi(p)\}\)遍历的剩余系\(\{A^{kx},x\le \varphi(p)\}\)一定也遍历,于是考虑枚举答案
\]
采用分块的思想,设\(t=\sqrt p,x=kt-b\),式子就变成了
\]
\]
我们枚举\(x=0 \sim t\),然后把得到的\(A^xB\)插到\(\tt{Hash}\)表中去。
然后枚举\((A^t)^k\)的\(k\),查询\(\tt{Hash}\)表中有没有\(A^{kt}\)
exBSGS
如果\(p\)不是质数,存在无解的判定\((\gcd(A,p)\nmid B)\)且\(B\not=1\)(\(B=1\)特判\(x=0\))
然后考虑操作一波式子
\]
把\(d\)除掉
\]
设\(C=\frac{A}{d},B'=\frac{B}{d},p'=\frac{p}{d}\)
原方程变为
\]
然后重复是否无解的判断并向下递归,直到\(A\perp p\)或者无解
然后\(BSGS\)即可,而常数\(C\)并不影响我们进行\(BSGS\)
复杂度?显然递归的深度是\(\log\)的,带上BSGS的就可以了。
Code:
#include <cstdio>
#include <cmath>
#include <unordered_map>
std::unordered_map <int,int> Hash;
int gcd(int a,int b){return b?gcd(b,a%b):a;}
#define mul(a,b,p) (1ll*(a)*(b)%p)
int exbsgs(int A,int B,int p)
{
if(B==1) return 0;
int ct=0,d,k=1;
while((d=gcd(A,p))^1)
{
if(B%d) return -1;
B/=d,p/=d,++ct;
k=mul(k,A/d,p);
if(k==B) return ct;
}
int t=sqrt(p)+1,kt=1;
Hash.clear();
for(int i=0;i<t;i++)
{
Hash[mul(kt,B,p)]=i;
kt=mul(kt,A,p);
}
k=mul(k,kt,p);
for(int i=1;i<=t;i++)
{
if(Hash.find(k)!=Hash.end()) return i*t-Hash[k]+ct;
k=mul(k,kt,p);
}
return -1;
}
int main()
{
int a,p,b;
scanf("%d%d%d",&a,&p,&b);
while(a&&p&&b)
{
int ans=exbsgs(a,b,p);
if(~ans) printf("%d\n",ans);
else puts("No Solution");
scanf("%d%d%d",&a,&p,&b);
}
return 0;
}
2018.12.19
【模板】exBSGS/Spoj3105 Mod的更多相关文章
- P4195 【模板】exBSGS/Spoj3105 Mod
传送门 首先要懂得 $BSGS$,$BSGS$ 可以求出关于 $Y$ 的方程 $X^Y \equiv Z (mod\ mo)$ 的最小解,其中 $gcd(X,Z)=1$ $exBSGS$ 算是 $BS ...
- 【BZOJ1467/2480】Pku3243 clever Y/Spoj3105 Mod EXBSGS
[BZOJ1467/2480]Pku3243 clever Y/Spoj3105 Mod Description 已知数a,p,b,求满足a^x≡b(mod p)的最小自然数x. Input ...
- 【bzoj2480】Spoj3105 Mod
2480: Spoj3105 Mod Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 557 Solved: 210[Submit][Status][ ...
- BSGS 扩展大步小步法解决离散对数问题 (BZOJ 3239: Discrete Logging// 2480: Spoj3105 Mod)
我先转为敬? orz% miskcoo 贴板子 BZOJ 3239: Discrete Logging//2480: Spoj3105 Mod(两道题输入不同,我这里只贴了3239的代码) CODE ...
- spoj3105 MOD - Power Modulo Inverted(exbsgs)
传送门 关于exbsgs是个什么东东可以去看看yyb大佬的博客->这里 //minamoto #include<iostream> #include<cstdio> #i ...
- BZOJ2480 Spoj3105 Mod 数论 扩展BSGS
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2480.html 题目传送门 - BZOJ2480 题意 已知数 $a,p,b$ ,求满足 $a^x≡b ...
- 模板BSGS(SDOI2011计算器) 模板EXBSGS
BSGS和EXBSGS是OI中用于解决A^xΞB(mod C)的常用算法. 1.BSGS BSGS用于A,C互质的情况. 令m=sqrt(C),此时x可表示为i*m+j. 式中i和j都<=sqr ...
- [luogu4195 Spoj3105] Mod (大步小步)
传送门 题目描述 已知数a,p,b,求满足a^x≡b(mod p)的最小自然数x. 输入输出格式 输入格式: 每个测试文件中最多包含100组测试数据. 每组数据中,每行包含3个正整数a,p,b. 当a ...
- BZOJ2480 Spoj3105 Mod
乍一看题面:$$a^x \equiv b \ (mod \ m)$$ 是一道BSGS,但是很可惜$m$不是质数,而且$(m, a) \not= 1$,这个叫扩展BSGS[额...... 于是我们需要通 ...
随机推荐
- 2018Java年底总结
一年又过去了,这是我的第二年的JAVA开发,总感觉有很多想说的,可惜语言组织能力着实一般,以下列举一些今年的总结. 1.首先告诫一下新入行或者新入职经验不多的小伙伴,写sql的时候根据业务能单表就单表 ...
- RabbitMQ入门:Hello RabbitMQ 代码实例
在之前的一篇博客RabbitMQ入门:认识并安装RabbitMQ(以Windows系统为例)中,我们安装了RabbitMQ并且对其也有的初步的认识,今天就来写个入门小例子来加深概念理解并了解代码怎么实 ...
- js数组的比较
如果两个数组元素个数都相等,但排序不同,那么它两个相等吗?结果肯定是否定的.但如果先调用sort()方法进行排序,结果就是true了. console.log(a.sort().toString()= ...
- SICP读书笔记 3.5
SICP CONCLUSION 让我们举起杯,祝福那些将他们的思想镶嵌在重重括号之间的Lisp程序员 ! 祝我能够突破层层代码,找到住在里计算机的神灵! 目录 1. 构造过程抽象 2. 构造数据抽象 ...
- impala 使用记录
在命令行里面直接输入类似下面的语句,就可以执行impala sql语句. impala-shell -q "select * from xxxc limit 10;" 当用pyth ...
- linq与lambda 常用查询语句写法对比
LINQ的书写格式如下: from 临时变量 in 集合对象或数据库对象 where 条件表达式 [order by条件] select 临时变量中被查询的值 [group by 条件] Lambda ...
- JavaScript中数组中遍历的方法
前言 最近看了好几篇总结数组中遍历方法的文章,然而"纸上得来终觉浅",决定此事自己干.于是小小总结,算是自己练手了. 各种数组遍历方法 数组中常用的遍历方法有四种,分别是: for ...
- HTML常用头部变量
简例:访问baidu的头部 GET /?tn=98827400_hao_pg HTTP/1.1 Host: www.baidu.com Connection: keep-alive Cache-Con ...
- 第二次作业(homework-02)成绩公布
学位后三位和对应成绩: 057 0008 4011 4012 7014 5015 5017 6018 0019 0026 2027 7036 0038 7.5046 7048 6.5051 0061 ...
- Beta周王者荣耀交流协会第五次Scrum会议
1. 立会照片 成员王超,高远博,冉华,王磊,王玉玲,任思佳,袁玥全部到齐. master:王磊 2. 时间跨度 2017年11月14日 19:00 — 19:50 ,总计50分钟. 3. 地点 一食 ...