概述

一个完整的 MapReduce 程序在分布式运行时有两类实例进程:

1、MRAppMaster:负责整个程序的过程调度及状态协调

2、Yarnchild:负责 map 阶段的整个数据处理流程

3、Yarnchild:负责 reduce 阶段的整个数据处理流程 以上两个阶段 MapTask 和 ReduceTask 的进程都是 YarnChild,并不是说这 MapTask 和 ReduceTask 就跑在同一个 YarnChild 进行里

MapReduce 套路图

MapReduce 程序的运行

1、一个 mr 程序启动的时候,最先启动的是 MRAppMaster,MRAppMaster 启动后根据本次 job 的描述信息,计算出需要的 maptask 实例数量,然后向集群申请机器启动相应数量的 maptask 进程

2、 maptask 进程启动之后,根据给定的数据切片(哪个文件的哪个偏移量范围)范围进行数 据处理,主体流程为:

   A、利用客户指定的 InputFormat 来获取 RecordReader 读取数据,形成输入 KV 对

  B、将输入 KV 对传递给客户定义的 map()方法,做逻辑运算,并将 map()方法输出的 KV 对收 集到缓存

  C、将缓存中的 KV 对按照 K 分区排序后不断溢写到磁盘文件

3、 MRAppMaster 监控到所有 maptask 进程任务完成之后(真实情况是,某些 maptask 进 程处理完成后,就会开始启动 reducetask 去已完成的 maptask 处 fetch 数据),会根据客户指 定的参数启动相应数量的 reducetask 进程,并告知 reducetask 进程要处理的数据范围(数据 分区)

4、Reducetask 进程启动之后,根据 MRAppMaster 告知的待处理数据所在位置,从若干台 maptask 运行所在机器上获取到若干个 maptask 输出结果文件,并在本地进行重新归并排序, 然后按照相同 key 的 KV 为一个组,调用客户定义的 reduce()方法进行逻辑运算,并收集运 算输出的结果 KV,然后调用客户指定的 OutputFormat 将结果数据输出到外部存储

mapTask的并行度

Hadoop中MapTask的并行度的决定机制。在MapReduce程序的运行中,并不是MapTask越多就越好。需要考虑数据量的多少及机器的配置。如果数据量很少,可能任务启动的时间都远远超过数据的处理时间。同样可不是越少越好。

那么应该如何切分呢?

假如我们有一个300M的文件,它会在HDFS中被切成3块。0-128M,128-256M,256-300M。并被放置到不同的节点上去了。在MapReduce任务中,这3个Block会被分给3个MapTask。

MapTask在任务切片时实际上也是分配一个范围,只是这个范围是逻辑上的概念,与block的物理划分没有什么关系。但在实践过程中如果MapTask读取的数据不在运行的本机,则必须通过网络进行数据传输,对性能的影响非常大。所以常常采取的策略是就按照块的存储切分MapTask,使得每个MapTask尽可能读取本机的数据。

如果一个Block非常小,也可以把多个小Block交给一个MapTask。

所以MapTask的切分要看情况处理。默认的实现是按照Block大小进行切分。MapTask的切分工作由客户端(我们写的main方法)负责。一个切片就对应一个MapTask实例。

MapTask并行度的决定机制

1个job的map阶段并行度由客户端在提交job时决定。

而客户端对map阶段并行度的规划的基本逻辑为:

将待处理数据执行逻辑切片(即按照一个特定切片大小,将待处理数据划分成逻辑上的多个split),然后每一个split分配一个mapTask并行实例处理

这段逻辑及形成的切片规划描述文件,由FileInputFormat实现类的getSplits()方法完成,其过程如下图:

切片机制

FileInputFormat 中默认的切片机制

1、简单地按照文件的内容长度进行切片

2、切片大小,默认等于 block 大小

3、切片时不考虑数据集整体,而是逐个针对每一个文件单独切片 比如待处理数据有两个文件:

  File1.txt 200M

  File2.txt 100M

经过 getSplits()方法处理之后,形成的切片信息是:

File1.txt-split1 0-128M

File1.txt-split2 129M-200M

File2.txt-split1 0-100M

 
FileInputFormat 中切片的大小的参数配置

通过分析源码,在 FileInputFormat 中,计算切片大小的逻辑: long splitSize = computeSplitSize(blockSize, minSize, maxSize),翻译一下就是求这三个值的中 间值

切片主要由这几个值来运算决定:

blocksize:默认是 128M,可通过 dfs.blocksize 修改

minSize:默认是 1,可通过 mapreduce.input.fileinputformat.split.minsize 修改

maxsize:默认是 Long.MaxValue,可通过 mapreduce.input.fileinputformat.split.maxsize 修改

因此,如果 maxsize 调的比 blocksize 小,则切片会小于 blocksize 如果 minsize 调的比 blocksize 大,则切片会大于 blocksize 但是,不论怎么调参数,都不能让多个小文件“划入”一个 split

MapTask 并行度经验之谈

如果硬件配置为 2*12core + 64G,恰当的 map 并行度是大约每个节点 20-100 个 map,最好 每个 map 的执行时间至少一分钟。

1、如果 job 的每个 map 或者 reduce task 的运行时间都只有 30-40 秒钟,那么就减少该 job 的 map 或者 reduce 数,每一个 task(map|reduce)的 setup 和加入到调度器中进行调度,这个 中间的过程可能都要花费几秒钟,所以如果每个 task 都非常快就跑完了,就会在 task 的开 始和结束的时候浪费太多的时间。

配置 task 的 JVM 重用可以改善该问题:

mapred.job.reuse.jvm.num.tasks,默认是 1,表示一个 JVM 上最多可以顺序执行的 task 数目(属于同一个 Job)是 1。也就是说一个 task 启一个 JVM。这个值可以在 mapred-site.xml 中进行更改,当设置成多个,就意味着这多个 task 运行在同一个 JVM 上,但不是同时执行, 是排队顺序执行

2、如果 input 的文件非常的大,比如 1TB,可以考虑将 hdfs 上的每个 blocksize 设大,比如 设成 256MB 或者 512MB

ReduceTask 并行度

reducetask 的并行度同样影响整个 job 的执行并发度和执行效率,但与 maptask 的并发数由 切片数决定不同,Reducetask 数量的决定是可以直接手动设置: job.setNumReduceTasks(4);

默认值是 1,

手动设置为 4,表示运行 4 个 reduceTask,

设置为 0,表示不运行 reduceTask 任务,也就是没有 reducer 阶段,只有 mapper 阶段

如果数据分布不均匀,就有可能在 reduce 阶段产生数据倾斜

注意:reducetask 数量并不是任意设置,还要考虑业务逻辑需求,有些情况下,需要计算全 局汇总结果,就只能有 1 个 reducetask

尽量不要运行太多的 reducetask。对大多数 job 来说,最好 rduce 的个数最多和集群中的 reduce 持平,或者比集群的 reduce slots 小。这个对于小集群而言,尤其重要。

ReduceTask 并行度决定机制

1、job.setNumReduceTasks(number);
2、job.setReducerClass(MyReducer.class);
3、job.setPartitioonerClass(MyPTN.class);

分以下几种情况讨论:

1、如果number为1,并且2已经设置为自定义Reducer, reduceTask的个数就是1
不管用户编写的MR程序有没有设置Partitioner,那么该分区组件都不会起作用

2、如果number没有设置,并且2已经设置为自定义Reducer, reduceTask的个数就是1
在默认的分区组件的影响下,不管用户设置的number,不管是几,只要大于1,都是可以正常执行的。
如果在设置自定义的分区组件时,那么就需要注意:
你设置的reduceTasks的个数,必须要 ==== 分区编号中的最大值 + 1
最好的情况下:分区编号都是连续的。
那么reduceTasks = 分区编号的总个数 = 分区编号中的最大值 + 1

3、如果number为 >= 2 并且2已经设置为自定义Reducer reduceTask的个数就是number
底层会有默认的数据分区组件在起作用

4、如果你设置了number的个数,但是没有设置自定义的reducer,那么该mapreduce程序不代表没有reducer阶段
真正的reducer中的逻辑,就是调用父类Reducer中的默认实现逻辑:原样输出
reduceTask的个数 就是 number

5、如果一个MR程序中,不想有reducer阶段。那么只需要做一下操作即可:
job.setNumberReudceTasks(0);
整个MR程序只有mapper阶段。没有reducer阶段。
那么就没有shuffle阶段

Hadoop学习之路(十四)MapReduce的核心运行机制的更多相关文章

  1. MapReduce的核心运行机制

    MapReduce的核心运行机制概述: 一个完整的 MapReduce 程序在分布式运行时有两类实例进程: 1.MRAppMaster:负责整个程序的过程调度及状态协调 2.Yarnchild:负责 ...

  2. Hadoop学习之路(四)Hadoop集群搭建和简单应用

    概念了解 主从结构:在一个集群中,会有部分节点充当主服务器的角色,其他服务器都是从服务器的角色,当前这种架构模式叫做主从结构. 主从结构分类: 1.一主多从 2.多主多从 Hadoop中的HDFS和Y ...

  3. Hadoop 学习之路(四)—— Hadoop单机伪集群环境搭建

    一.前置条件 Hadoop的运行依赖JDK,需要预先安装,安装步骤见: Linux下JDK的安装 二.配置免密登录 Hadoop组件之间需要基于SSH进行通讯. 2.1 配置映射 配置ip地址和主机名 ...

  4. Hadoop 学习笔记 (十) MapReduce实现排序 全局变量

    一些疑问:1 全排序的话,最后的应该sortJob.setNumReduceTasks(1);2 如果多个reduce task都去修改 一个静态的 IntWritable ,IntWritable会 ...

  5. 学习之路十四:客户端调用WCF服务的几种方法小议

    最近项目中接触了一点WCF的知识,也就是怎么调用WCF服务,上网查了一些资料,很快就搞出来,可是不符合头的要求,主要有以下几个方面: ①WCF的地址会变动,地址虽变,但是里面的逻辑不变! ②不要引用W ...

  6. 嵌入式Linux驱动学习之路(十四)按键驱动-同步、互斥、阻塞

    目的:同一个时刻,只能有一个应用程序打开我们的驱动程序. ①原子操作: v = ATOMIC_INIT( i )  定义原子变量v并初始化为i atomic_read(v)        返回原子变量 ...

  7. zigbee学习之路(十四):基于协议栈的无线数据传输

    一.前言 上次实验,我们介绍了zigbee原理的应用与使用,进行了基于zigbee的串口发送协议,但是上个实验并没有实现数据的收发.在这个实验中,我们要进行zigbee的接受和发送实验. 二.实验功能 ...

  8. IOS学习之路十四(用TableView做的新闻客户端展示页面)

    最近做的也个项目,要做一个IOS的新闻展示view(有图有文字,不用UIwebview,因为数据是用webservice解析的到的json数据),自己一直没有头绪,可后来听一个学长说可以用listvi ...

  9. 《Hadoop学习之路》学习实践

    (实践机器:blog-bench) 本文用作博文<Hadoop学习之路>实践过程中遇到的问题记录. 本文所学习的博文为博主“扎心了,老铁” 博文记录.参考链接https://www.cnb ...

随机推荐

  1. SpringBoot(二) Core Features: SpringApplication

    参考 文档: SpringApplication

  2. java基础题目日常思考(持续更新)

    public static void main(String[] args) { Integer a = 0; count(a); System.out.println(a); // 问题: a 输出 ...

  3. HDU 1576 A/B 暴力也能过。扩展欧几里得

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  4. vue+element ui 的tab 动态增减,切换时提示用户是否切换

    前言:工作中用到 vue+element ui 的前端框架,动态添加 Tab,删除 Tab,切换 Tab 时提示用户是否切换等,发现 element ui  有一个 bug,这里记录一下如何实现.转载 ...

  5. LeetCode CombinationSum II

    class Solution { public: vector<vector<int> > combinationSum2(vector<int> &num ...

  6. apply、call、bind有什么区别?

    使用 apply var a = { name : "Cherry", func1: function () { console.log(this.name) }, func2: ...

  7. ArcGIS for JavaScript 关于路径开发的一些记录(二)

    又是高度集中开发路径模块的一天.真希望自己以后都可以如此的专注和高效(虽然知道很难一直都保持这样的状态,我会坚持的~哈哈哈) 言归正传,今天开发了途径点的功能和改进了些相关起点.终点的代码.先说一下我 ...

  8. 润乾报表一个页面中的echarts地图与其他区块的联动

    需求概述: DBD样式效果如下图所示,需要点击左侧地图中的地区,右侧的仪表盘,柱线图可以对应显示对应该地区的数据. 实现思路: 分别制作带有地图.仪表盘.柱线图的3张报表:将3张报表放到DBD中设置布 ...

  9. Linux 加阿里yum源

    阿里 yum 源设置 阿里云Linux安装镜像源地址:http://mirrors.aliyun.com/CentOS系统更换软件安装源 第一步:备份你的原镜像文件,以免出错后可以恢复.mv /etc ...

  10. 深入理解SVG坐标体系和transformations- viewport, viewBox,preserveAspectRatio

    本文翻译自blog: https://www.sarasoueidan.com/blog/svg-coordinate-systems/ SVG元素不像其他HTML元素一样受css盒子模型所制约.这个 ...