大数据的时代, 到处张嘴闭嘴都是Hadoop, MapReduce, 不跟上时代怎么行? 可是对一个hadoop的新手, 写一个属于自己的MapReduce程序还是小有点难度的, 需要建立一个maven项目, 还要搞清楚各种库的依赖, 再加上编译运行, 基本上头大两圈了吧。 这也使得很多只是想简单了解一下MapReduce的人望而却步。

本文会教你如何用最快最简单的方法编写和运行一个属于自己的MapReduce程序, let's go!

首先有两个前提:

1. 有一个已经可以运行的hadoop 集群(也可以是伪分布系统), 上面的hdfs和mapreduce工作正常 (这个真的是最基本的了, 不再累述, 不会的请参考 http://hadoop.apache.org/docs/current/)

2. 集群上安装了JDK (编译运行时会用到)

正式开始

1. 首先登入hadoop 集群里面的一个节点, 创建一个java源文件, 偷懒起见, 基本盗用官方的word count (因为本文的目的是教会你如何快编写和运行一个MapReduce程序, 而不是如何写好一个功能齐全的MapReduce程序)

内容如下:

import java.io.IOException;
import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser; public class myword { public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1);
private Text word = new Text(); public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
} public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
} public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(myword.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

与官方版本相比, 主要做了两处修改

1) 为了简单起见,去掉了开头的 package org.apache.hadoop.examples;

2) 将类名从 WordCount 改为 myword, 以体现是我们自己的工作成果 :)

2.  拿到hadoop 运行的class path, 主要为编译所用

运行命令

hadoop classpath

保存打出的结果,本文用的hadoop 版本是Pivotal 公司的Pivotal hadoop, 例子:

/etc/gphd/hadoop/conf:/usr/lib/gphd/hadoop/lib/*:/usr/lib/gphd/hadoop/.//*:/usr/lib/gphd/hadoop-hdfs/./:/usr/lib/gphd/hadoop-hdfs/lib/*:/usr/lib/gphd/hadoop-hdfs/.//*:/usr/lib/gphd/hadoop-yarn/lib/*:/usr/lib/gphd/hadoop-yarn/.//*:/usr/lib/gphd/hadoop-mapreduce/lib/*:/usr/lib/gphd/hadoop-mapreduce/.//*::/etc/gphd/pxf/conf::/usr/lib/gphd/pxf/pxf-core.jar:/usr/lib/gphd/pxf/pxf-api.jar:/usr/lib/gphd/publicstage:/usr/lib/gphd/gfxd/lib/gemfirexd.jar::/usr/lib/gphd/zookeeper/zookeeper.jar:/usr/lib/gphd/hbase/lib/hbase-common.jar:/usr/lib/gphd/hbase/lib/hbase-protocol.jar:/usr/lib/gphd/hbase/lib/hbase-client.jar:/usr/lib/gphd/hbase/lib/hbase-thrift.jar:/usr/lib/gphd/hbase/lib/htrace-core-2.01.jar:/etc/gphd/hbase/conf::/usr/lib/gphd/hive/lib/hive-service.jar:/usr/lib/gphd/hive/lib/libthrift-0.9.0.jar:/usr/lib/gphd/hive/lib/hive-metastore.jar:/usr/lib/gphd/hive/lib/libfb303-0.9.0.jar:/usr/lib/gphd/hive/lib/hive-common.jar:/usr/lib/gphd/hive/lib/hive-exec.jar:/usr/lib/gphd/hive/lib/postgresql-jdbc.jar:/etc/gphd/hive/conf::/usr/lib/gphd/sm-plugins/*:

3. 编译

运行命令

javac -classpath xxx ./myword.java 

xxx部分就是上一步里面取到的class path

运行完此命令后, 当前目录下会生成一些.class 文件, 例如:

myword.class  myword$IntSumReducer.class  myword$TokenizerMapper.class

4. 将class文件打包成.jar文件

运行命令

jar -cvf myword.jar ./*.class

至此, 目标jar 文件成功生成

5. 准备一些文本文件, 上传到hdfs, 以做word count的input

例子:

随意创建一些文本文件, 保存到mapred_test 文件夹

运行命令

hadoop fs -put ./mapred_test/

确保此文件夹成功上传到hdfs 当前用户根目录下

6. 运行我们的程序

运行命令

hadoop jar ./myword.jar myword mapred_test output

顺利的话, 此命令会正常进行, 一个MapReduce job 会开始工作, 输出的结果会保存在 hdfs 当前用户根目录下的output 文件夹里面。

至此大功告成!

如果还需要更多的功能, 我们可以修改前面的源文件以达到一个真正有用的MapReduce job。

但是原理大同小异, 练手的话, 基本够了。

一个抛砖引玉的简单例子, 欢迎板砖。

版权声明:

本文由 雷子-晓飞爸 所有,发布于http://www.cnblogs.com/npumenglei/ 如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任。

如何快速地编写和运行一个属于自己的 MapReduce 例子程序的更多相关文章

  1. [Hadoop in Action] 第4章 编写MapReduce基础程序

    基于hadoop的专利数据处理示例 MapReduce程序框架 用于计数统计的MapReduce基础程序 支持用脚本语言编写MapReduce程序的hadoop流式API 用于提升性能的Combine ...

  2. 作业二:个人编程项目——编写一个能自动生成小学四则运算题目的程序

    1. 编写一个能自动生成小学四则运算题目的程序.(10分)   基本要求: 除了整数以外,还能支持真分数的四则运算. 对实现的功能进行描述,并且对实现结果要求截图.   本题发一篇随笔,内容包括: 题 ...

  3. 【实验 1-1】编写一个简单的 TCP 服务器和 TCP 客户端程序。程序均为控制台程序窗口。

    在新建的 C++源文件中编写如下代码. 1.TCP 服务器端#include<winsock2.h> //包含头文件#include<stdio.h>#include<w ...

  4. 3.编写sub过程及开发函数——《Excel VBA 程序开发自学宝典》

    3.1 编写sub过程 实例: Sub 建立10个表() If sheets.count>=10 then exit sub Sheets.add , sheets(sheets.count) ...

  5. C# -- HttpWebRequest 和 HttpWebResponse 的使用 C#编写扫雷游戏 使用IIS调试ASP.NET网站程序 WCF入门教程 ASP.Net Core开发(踩坑)指南 ASP.Net Core Razor+AdminLTE 小试牛刀 webservice创建、部署和调用 .net接收post请求并把数据转为字典格式

    C# -- HttpWebRequest 和 HttpWebResponse 的使用 C# -- HttpWebRequest 和 HttpWebResponse 的使用 结合使用HttpWebReq ...

  6. Linux打包免安装的Qt程序(编写导出依赖包的脚本copylib.sh,程序启动脚本MyApp.sh)

    本文介绍如何打包Qt程序,使其在没有安装Qt的系统可以运行. 默认前提:另外一个系统和本系统是同一个系统版本. 1,编写导出依赖包的脚本copylib.sh #!/bin/bash LibDir=$P ...

  7. vuex 快速上手,具体使用方法总结(含使用例子)

    网上有关vuex的文章很多,但有些比较复杂,这篇文章能让你快速使用vuex: vuex 用处:管理全局状态(类似全局变量,每个组件都能访问到) vuex 用法: //下面是一个js文件,用最简单最全的 ...

  8. 【babel+小程序】记“编写babel插件”与“通过语法解析替换小程序路由表”的经历

    话不多说先上图,简要说明一下干了些什么事.图可能太模糊,可以点svg看看 背景 最近公司开展了小程序的业务,派我去负责这一块的业务,其中需要处理的一个问题是接入我们web开发的传统架构--模块化开发. ...

  9. 编写一个简单的jdbc例子程序

    package it.cast.jdbc; import java.sql.Connection; import java.sql.DriverManager; import java.sql.Res ...

随机推荐

  1. springboot之websocket,STOMP协议

    一.WebSocket 是 HTML5 开始提供的一种在单个 TCP 连接上进行全双工通讯的协议. WebSocket 使得客户端和服务器之间的数据交换变得更加简单,允许服务端主动向客户端推送数据.在 ...

  2. C++STL学习笔记_(2)deque双端数组知识

    #include<iostream> using namespace std; #include "deque" #include "algorithm&qu ...

  3. Package设计1:选择数据类型、暂存数据和并发

    SSIS 设计系列: Package设计1:选择数据类型.暂存数据和并发 Package设计2:增量更新 Package 设计3:数据源的提取和使用暂存 一,数据类型的选择 对于SSIS的数据类型,容 ...

  4. python模块-datetime模块

    上面一篇已经讲了time模块,再来学习datetime模块. datetime主要有datetime.timedelta.time.date这4个子模块. a.datetime常用的函数(dateti ...

  5. python request 以json形式发送post请求的正确的姿势

    一个http请求包括三个部分,为别为请求行,请求报头,消息主体,类似以下这样: 请求行,请求报头,消息主题. 以json串提交数据,编码格式: application/json, 必须加上 impor ...

  6. Unity萌新日记—开发小技巧与冷知识(脚本篇)

    在学习unity的过程中,总会遇到很多零碎的知识点和小技巧,在此把它们记录下来,方便日后查看. 第一篇是关于脚本的一些你可能不知道的小知识. 还是个正在学习的萌新,如果写的不好,请谅解. Unity版 ...

  7. 《Python 网络爬虫权威指南》 分享 pdf下载

    链接:https://pan.baidu.com/s/1ZYEinjOwM_5dBIVftN42tg 提取码:1om6

  8. 我的第一个bootstrap实例

    先上代码: <!doctype html><html lang="en"><head> <meta charset="UTF-8 ...

  9. C++ 学习笔记 变量和基本类型(一)

    C++ 学习笔记 一.变量和基本类型概述 类型是所有程序的基础.类型告诉我们数据代表什么意思以及可以对数据执行哪些操作. c++基本类型: 字符型 整型 浮点型 c++ 还提供了可用于自定义数据类型的 ...

  10. mac上搭建appium+IOS自动化测试环境(二)

    上一篇: mac上搭建appium+IOS自动化测试环境(一) 9.安装appium-xcuitest-driver依赖 进入WebDriverAgent安装目录,运行bootstrap 首先进入目录 ...