程序功能:

统计出文件中文本的行数,每行字符数、单词数,文本空行数,文本总字符数、总单词数并显示。

使用方法:

1.在电脑中建立文本

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAcMAAAAVCAIAAAC19BIPAAAFhklEQVR4nO2avW/iSBjG/RdRUfFnpE+bzhU9t2cnQBIwkL3NOmFxDEnc2XSRXFBwVXSioXC0UuqTrFx5umB7bHGFv8bj8UcWCNnVa/2KMJ55PDjywzPzmlmYa5z7+/vbu7vJZDIej29uZEmSvo1Gw+Hw6vpantz++f0foj8AAADAEJ9v7+688HA9z3UDFEV5enoayWMwUwAAAALSSSeTied5DkKOg2zHsW3Hsh3LdhRFeXl5MQxjOLrZ+6QBAAA+FKSTjsdjz/PU5GHZtqIonU6n0+n0Ly72PmkAAH45TIlnhXlBt5naaqjmj+osBV6f4S1zuUitLKST3tzInufZjoMHUsu2LcteWTZCbq8/2PcdB4DdM5fZ4GhJRtS+FCiNQTv5TMYKsoa3G3ojaInUkh3wPgXTSA3Mn1JRe0qzzIW2yFIgbyxJCSfN0QmcVBPDOxA56VxmCZN9I6STSpLkpjJpdCDkdnu97d2453qVOVB+7CwA7A4svMzl0EdMiY+fQLyRZWVBTNpT9pMZeoEp8YE9aSLLiktan6xpZA5c5EwpVGYpTkrVLLzQpkg8W3Dwuqa28rs01GUJHVnA+jRUc6a2WHHpO2nw92bfhXTSb6OR63pYGnUs215ZPhZCbqcrbO9WgpMCH58w4MRZcp1eQmoJ2zIlPitb0eISabvUSFVmYAIt7aSG3uB1ieawBZobR7YcZmqLXIxnLboNvZEdkIt1DL3xbqv74XDounmZ9LzTTasMDpkK97ww1wvz4YAJ7U85Yqr9adjoH2G3RCNT7Q+4GsMcDUI15vAIPzvdzb8QAIqJwuBcxpML4VOJj6FhRQkooZayJNLysrws5SAUr8w7G7h/3G7ojZQ7UzXzL7Qpht5IRkJNpP4OmRIvS2qroeoCNUIW6Wgiy/KtBitr8Z5JIqhu8i1IJ726vnZdz7LtaG80YGW9riyE3NOz87TKlKsxhw8Lc71QjirVmm+Xob0+HCQMFCeROoP+sf9CJgX2jaE32CB7EmvAPCedy2w4inArTcSSbJCwyPJIok9qGjkDCbJmSHdSqma5C21MMsKnkyN2W4J9D3qWzNdZCqIssLIgstQfqi07qSheua6bnUlR+/SMIvTYrzBHA3M9OKzVHx8Oqv2p+Vyv1uqPeDJNQ3iln1Jr9UfqWQB4V2ZqK1HnKZ9Jk6Ey6VyUlamGP9upPuQ0sgbSzlKnVJhkqal5d6v74FsH+vRiUTTnqOJE/xbZOprICvNw3/kdMunl16/IdeMoalmvq5DXlYNQs92mCfm+iXmo0q/4BgpOCvyEUGosCX/M3SdNpiHcBTIqG/Fjn06+ucWQvGI3NiWTUpPJdMbSu7TbJXC39FWwQl+ydk+/OXQdUxL1WfotKGzUlp30y+Ulys6kDkInzRZVaMrVKtVgje//Tdk5NR/q3PPisV8J7JKyup9yNVjdA3uGHh4x90xtZaYqTukVdNJ8sU29mdoK1VJ9qC9IUQZSyMqelNU9VbP0hbZDmBPpex2UFNmSjIwfvMwdiXd00s9/fEHIjXPoynpdrf57DXAQ4k+adK3HfiVyzNgr41MMwwQ1JezslKv5NaX6IYMbaOTIUHEC9kDqucU2Pf2jsPgTvYmJjU0+xrP4/Z5QjeiTMQ3KQBpvcNIMzZIX2hDNL82Fhuh/zPK1nPdJS+j4TkpL6Ftf3V98/oxQXibljo93dEMB4BemTPl7tyXyj4fvaNRyVmDiqQhJc1KztM47ZtL+xYWDUA6fOH7v/wAA+Nkos8+4+71IYGeQTtrrD7q9XqcrnHe6p2fn7dOzZrt90mzxJ03u+PgTx//2O7f3SQMAAHwoSCcFAAAA3go4KQAAwKaAkwIAAGwKc/rXGgAAANgE5u9/1wAAAMAm/A/+4UWEXR2Z5gAAAABJRU5ErkJggg==" alt="" />

2.打开源程序

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA+UAAAJHCAIAAAB5AmCMAAAgAElEQVR4nO3d+3PU9334+/1n2n7Tn77TZibnt0wn33yTtjnn9KRxDiVQ416+SXxcT09aZzJJ7NZxD7ZlIwMydwnMTRgJJKH7XasLuiMhCXEHC4QxmDvGt7QznB8+9rJopdXuagVv0OMxr2HEW7ufvUgWT3381ir2+9///ssvv/ziiy8+//zzzz777N69e3fu3Llx48b69etXLF9mjDHGGGOMWezp7u7u6+sbHBw8cuTI6Ojo0aNHx8fHJyYmjh07FkuO9U8//fSTTz65devWxx9/vHbt2hXLl/3gL75vjDHGGGOMWbxZsXxZR0dHT09Pf3//8PDwyMhIcrJ/1etRrN+7d+/u3bs3b968evVqYWGhXjfGGGOMMWaxZ8XyZa2trV1dXb29vYODg4lkHxsbGx8fj804uX779u3r169/9NFHa9as0evGGGOMMcYs9qxYvqy5uTkej0en2IeGhhK7YsbGxmIzTq7funXr2rVrH3744VtvvaXXjTHGGGOMWexZsXxZQ0NDW1tbd3d3dIp9aGgosSsmlvgx008++eTOnTvRZphLly7pdWOMMcYYYx7BrFi+rK6urrW1tbOz8/Dhw/39/dGumAe9Hu2EuXv3bvTKMFeuXJmeni4oKNDrxhhjjDHGLPasWL6strY2sSUmeqGYxCn2WGLn+t27dxOb1y9cuPDmm2/qdWOMMcYYYxZ7VixfVl1d3dTU1N7eHm2JSexiHxkZiUWbYaKT69Hm9cuXL09NTb3xxht63RhjjDHGmMWeFcuXHTp0KNrCHm2JiU6xRy8U81Cv37x58+OPP/7www8/+OCD119/fd5ef+655/7XT3+Wyaxateov//x7j/25MMYYY4wxJrRZsXxZVVVVfX19a2trtCWmt7d3YGAgOsUeizbD3Llz5/bt21GvX7p06fz58ydOnJi318srqoePTg4fPZYyk0fGJo+MTVY3dVU3dlY3dpaWVfzP737nsT8XxhhjjDHGhDYrli+rrKysq6traWnp6Ojo7u5O/NTpzF6/cePG1atXp6enz507d/z48Xl7vaWt84svv/z8i3nmiy+/bGnv/B/f+bPH/lws7rzdd396/4uP7Q48Xz59v//tlPUX9k/fny5/4dHeaJjzmD9AxhhjjMl97qf1KO/JqRMn1rxVkLq+5q2CUydO5HbMFcuXHTx4MPqR046Ojq6uruQtMQ96/datW8m9Pjk5OW+vd8S7Tp6efqOk/c0dbQU7W9/a07JmX/Px4+dv3rh+8cKFixcu3Lhxfeuhoa2Hhubo9efLp5Oe6QctVdCft8Sceag1fffv9z14il8sm05uuBl/zW5m5mBBf+Kh9c3yQc3v48qp12c/SJK+NfPcjYX3+tP6ATLGGGNMPidNlD/iXl/zVsHvv/h8RrLPupj5JHo9+pHTmb0ebV6/ffv2rVu3rl+/Hr2YY+a9furM5Z8VVv98/aEXNle8WHLg/91VNjZ25ub1j5N7vaRhIE2vz1p7L5ZNT5c9n5fndOahHoq2KE8f9OKavvu5327ykd/uu38/6aG93Zenh/PgGUt5inJJ53kOMuNRpL0/PkD5ekKMMcYYkzrh9PoPUup8gbH+g7/4/orlyw4cOFBTU9PY2Bj9yGnyFvbYxMTE2NjY6OjoyMjI8PBwf39/T09Pe3t7Y2PjvL3e3Npx6szll3c1Pb/5wMqi9/5mw5a/2fLu2NiZm9evXbhw4cKFqRs3ru/q6t431J5tr//ghf3T+dq6MONQD51vLui/39ffl7gPz5dPL+C8/oMcLOifJ3NznqRnbOZTlFMpznuQF/ZPpzvLno88fVo/QMYYY4zJ3wTV6z9IavSFx/oP5u317du3l5SUFBcXb926dcuWLRs3biwqKnrnnXcy+X1JUa//9Vslf/5G0f/+ztq/2vD2X299Izq/fuHCVHR+/eBEw6ET1Zn2+oNWS+2eB7sXolOhL5ZNJzZsJG2imHmxlEMl/fXtvvt9BS+WTX913YfaNGmzxIPF6LoF/Q927yRf7OvFdPukZzts8u0+eLug//50eVlf0mNJuu70/hdnf1wPLvMg6+c8YNonZ5aVuZ7bNDc617M6XV6WeJae1g9QXj57jTHGGPP9H4TX6z/4OtkXHus/mLfXF7IfJur1v3xr/f+xrvD/2vTWj4pfX7brd9H59cR+mMmPJic/msxk//p02fMPnVt9uy9pV3HyLucHPffV7oiHzpvOcrGHD/X9RP+tiU7cJs7vPrhYQX9yML3d93VaRXf4oWRMhOaavnlzcI7DzpmD95M6dbZvYx56XA/ft1kOPusBZznIHL0+63M7743OvANJZ8rvP7Q75an8AOXls9cYY4x5rHM/rUd5N3J416LOo+v1hoaG+vr62trampqaQ4cOVVRUlJWV7d27d8eOHRn2+v/57pq/3vLmj7f/f3+z+9WV7/92bOzMjaT9619+8fmXX3ye9X6Yv/h+tBciKQQf8nVURecjk9Jzzoslber4qv8Smyu+euPB3uiZPfdQnj6Uy8kXS/x1rhyc67BpTt8+qLdZczD5cc1xlnqeA6Y/SNIlZ39u573RpLfnerqe5g9QXj57jTHGGBNcrz/S/TDd3d1dXV3xeLyjo6Otra2pqam+vr6qqqqsrCzDXv/Rttf/752v/WTvvz1b9uu/q/jl2NiZ69e+7vXr1+/d++T2rVs59XqaPktMSvHMsc/h4Z9TLOi/37cmadv0mr77/W8nJews3TbH6e3ZA3SO17eZ67ALyMGkx5Vzr6c5yLyNm69ef2o/QHn57DXGGGNMUL3+qH/edEG93hYfP3auoLLsrUPvr6nZ+07d7nUNOwcHxxO9fv3atbt3bt+4cSP7/etf/3W2HxBc0/dg4+902fNJr/E3+8UePtRXV+zv63to50NfX/9Dp3sf3hcx+07rOTd4vFg2nfyqJl+//Mgch0161EnbmjPLwQeP6/ny6QevS/jgOBn0+oyDPPz6MMmn4VOf2zQ3OusjmmM/zFP5AXpwrQV/9hpjjDFLfsLp9UV6PcfF6vXGlo7//M/f371z8+7tm3dv3/zk7t1P7t7+5M6tzz/79IvPP7t3L3pZ95u3bt3MsdeTs/KF/Ym97ontv/dTUzXlYrMc6i9SX6kwaS9y8spX5t4u8mAPQ/IPUM541/2HN+KnHjaqwPv379+f7utLn9dfXfKhVzxMKsW+vpkHz6TXHz5I0oaMh0/3zvLcznGjsz+i5COkPF1P3wco+ZN5oZ+9xhhjzFKf+2k9ynuySL8vabF6fcOmbS3tnanTFu/u6Drc1tGVWNm0pfi7Of1+0wevDbLgyeOhgpq8PK7H8OSkbP94Wj9AxhhjjDHpZxF7/c+/993vfufP/kcG893v/Nmff++7OT2Ah38ScUGTx0MFNXl5XI/gyXm+fPqhV25J+XnKp/UDZIwxxhiTbhax143JbpL2e3jxE2OMMcaYaPS6McYYY4wx4Y5eN8YYY4wxJtzR68YYY4wxxoQ7et0YY4wxxphwR68bY4wxxhgT7uh1Y4wxxhhjwh29bowxxhhjTLij140xxhhjjAl39LoxxhhjjDHhzoJ6PQYAAGTs/v37t7Ok1wEA4BHR6wAAEC69DgAA4dLrPJHi8bh169atW7cOS0H+e72hoaG+vr62trampubQoUMVFRVlZWV79+7dsWOHXidfQvt3wrp169atP951eIrlv9cnJibGxsZGR0dHRkaGh4f7+/t7enra29sbGxv1OgsUj8ejr9SJP1PfsG7dunXrS2cdloK5en3VqlU59vr27dtLSkqKi4u3bt26ZcuWjRs3FhUVvfPOOwUFBXqdvIh/zbp169atW4en3qy9vuprufT6vXv37t69e/v27Vu3bl2/fv3KlSvT09Pnzp2bnJzU6+RFaP9OWLdu3br1x7sOT7fUXl/1ML1OQBJfphN/pr5h3bp169aXzjosBTN6PTnT50p2vc7jN9eXaevWrVu3vjTX4Sk2a6/P9Ve9TihC+3fCunXr1q0/3nV4iqX2eur2GL0OAACPR/5fz1GvAwBAvuh1AAAIl14HAIBwPbpeX716tV4HAICsOL8OAADhun///pFs6HVgqXviXk4u9Q4/cQ8BYCl7dL1uPwzwdMhv7D6CmF7Um4jPJ183BLBkOb8OMLu50nPxenrGreQreedN6oXcxIzrpv8rADnQ6wAZmbWk89XTM96Ya3EhB593MS/H1+sAeafXeSKJAB696LMu9XNvkdpXr8OsfFKxBOl1nki+XvNopEbzovZo3ns9+fT/YmyGSX/YvPzPB5jBJxVLkF7nSZL45z/xpy/cLLYZn3LJiws/8oyoXexeTz34Ao+fevVF/X6GpczXf5Yyvc6Tx3k7HrEZsR5btNPq+e31NN9j6HWeUL7+szTpdZ48vl7ziKV+sj0RvZ56nLnk5fiZ/BUWyNd/lia9zpPE/w/l0Zvr5HoeP/dmpPmMT+/89nSaxZyPn16+boglztd/ljK9zhPJl2kemXjKee5F7fW830rqdxp5Oeysx5/3r7BwPqlYgvQ6TyRfr3k00p9Wz9fn4awZnfeDJ/9Vr/Pk8knFEqTXAWY3706SRUrqxT54fnNHrwMstvz3+sTExNjY2Ojo6MjIyPDwcH9/f09PT3t7e2Njo14HnmiL0b5znfB+Is6vz3u39TrAwuW/17dv315SUlJcXLx169YtW7Zs3LixqKjonXfeKSgo0OvAk2uu9FxIks44W59Gvm5ixs3lfNjUA85YyfvGG4Aly34YgPml786QqzTRzXPtusk53Oe9VshPC8ATRK8DAEC47t+/fztLeh0AAB4RvQ4AAOHS6wAAEK5H1+urV6/W6wAAkJVH1OsFBQV6HQAAsuX8Ok+kbF8J27p169atP93r8BSzf50nUmj/Tli3bt269ce7Dk8xvc6TJB6PR1+pE3+mvmHdunXr1pfOOiwFep0nT/xr1q1bt27dOjz19DpPntD+nbBu3bp16493HZ5uep0nSeLLdOLP1DesW7du3frSWYelwOvD8ESa68u0devWrVtfmuvwFHN+nSdSaP9OWLdu3br1x7sOTzG9DgAA4dLrAAAQLr0OAADh0usAABAuvQ4AAOHS6wAAEC69DpDuFeJmfVcmryi3eK86t9ivZ5d6/AxvMfM7lttNeCE/YGnS68ASksMrOs9Vlnnpy3hmsj1s3o+/kBDP8GJ6HWAu+e/1iYmJsbGx0dHRkZGR4eHh/v7+np6e9vb2xsZGvQ48donmy7Bf0/w1v4mZ+ZGzfQizHnCum5h1ffF6PfWNNFeZ92ECPJXy3+vbt28vKSkpLi7eunXrli1bNm7cWFRU9M477xQUFOh14LHLvEdT0zCHs8KL2uuZ31CG93yuIM5kMb25bjqeWa/n8JABnhp6nSeSf6fJi3nLMpYSlKkXnvVaqVfP6j7Men8yj+BM7kYmBRyf7buUDA+V4XrmH4KsHi9PMR96lqDcev3VV19dvXp1QUFBYWHhunXrioqKNmzYsGnTps2bN8dqamqqq6urqqoqKysPHjxYVlZWWlq6a9eu4uJivU6++HpNfmVbnFkdNsOSnlGxae5A5otp3vu4ej25yGd9yHNdODbf08IS4aPPEpRbr7/88su/+93vomRfs2ZNYWHh2rVr169f/+6778Zqa2tramoOHTpUVVVVUVFRXl6+b9++3bt3l5SU6HUWKPGPd+JPX7jJ3IzTt7Oe2U29TOzhTJxxgVjaengKej23K6a5P1n1+qzH9F/90uTrP0tZbr3+wx/+8Jlnnlm2bNny5ctXrFixcuXKZ599dtWqVc8991ysvr6+rq4ucZb94MGD+/fv37Nnz44dO/Q6eZEaTJC5zD9zUrNy1o5feK+nl+FhZy3mzM16kFnX09yl9CuxtM9bhh8X/+EvcWn+u4CnWP73wzQ0NNTX1yfOsldUVJSVle3du1evky++XrMQM9IzTR+nrsez6fV5Gzf9VdJfLMM+TvPeuXo6zbOR/oYyb/oMi3/W+5b+Mjz1fP1nacqt17dt27Zz587S0tKysrKKioqqqqrq6uq6urqGhoZYU1NTlOzRWfbKysoDBw7s27dv586dep0FmpFNvmqTg/RZOW9opub7Qno9tY9nlXqV9DeXyXszOUhWvR6b7wlJvVhWDzmTS8Z8WXh6JT6ycV//WXpy6/Xi4uJdu3bt27fvwIEDUazX1tbW19c3NTXFWlpampqaGhsbo7Ps0Sn2/fv37969W6+TL75Mk7MZDTpv/8VSQiH2cJhmEr5zXSzNBdKUaIa3mMP9mfc+5HBDGV5mrseb5iGnuda894Enl48vS1Buvb59+/Y9e/bs37+/oqLi0KFDUaw3Nja2tLREh/3GT7c3NZT8r//23/7x77/31S392Ut79Dr54us1OZvR6+nfOyPiF6/XMwnl9O8NodfTt3XOh03zXl8KliAfdJag3Hp9x44dpaWl5eXllZWVNTU1dXV1jY2Nzc3Nra2tsfb29tadP//GN362fftPvxGLfe/fa6uqqsp//Z3YH6zQ68BjNyO1U8114VhKwc+Vp9nG5VzfFaR/CBkePKvLL6TXZ3yrM9edyfawmd9oYkXPAU+Z3Hp9586d0WaYQ4cORdvWo1hvb29PHPkvV+/8+Te+8bPi+vrq6uqDG577gz9YqdeBxy59GadPyVmvmEnjzvuu5Pv2eHs9zXcvWR0tL/dn3vfqdWApyK3Xd+/eHW2GqampaWhoaGpqamlpaW9vj8fjsc7Ozo6Ojvb29tZdP//GN35W0tBQU1NTsVGvA0GYK7XnOlkem7vXU6+SW2on3pV8/Fm7c9Y7meaeZ7ue5nuPuW4lTR8vsPhTDzWrNNcCeDrk1ut79uwpLy+vqqqqra2Ntq23tbXF4/Gurq5YV1fXV8m++/k//uOfb29qqqurq9r4d3/4h3+r14GgpMnTWdcTzZpa8Gmunnq0GddKn7zzrqS56fTfHqS5k5lcJcNcTr1Ybr2e1TrA0yS3Xi8tLY02w9TX1zc3N7e1tXV0dHR2dvb09Hx94D9+Yc+e/+eP//jnO5qa6uvrqzb9/R/+4bN6HQAAspJbr+/bty/aDNPY2BhtW+/s7Ozu7u7t7Y0dPny4p6cncZa9paWloaGhurr6wIEDeh0AALKSW6/v37+/srKyrq6uubk52rbe3d19+PDhvr6+WF9fX29vb09PT3d3dzweb2tra2pqqq2traio0OsAAJCV3Hq9rKws2gzT0tLS0dHR1dXV09PT19c3MDAQ6+/v7+vri86yd3Z2tre3Nzc319XV6XUAAMhWbr1+4MCBaDNMW1tbtG29t7d3YGBgaGgoNjg4ODAwECV7dIq9tbW1vr6+qqpKrwMAQFZy6/WKiora2trm5uaOjo5oJ0x/f//Q0NCRI0diw8PDycne1dXV3t7e2NhYXV2t1wEAICu59XplZWW0GaazszPatj44ODg8PDw6OhrbsmXL5s2bN23atHHjxnfffXfdunWFhYUFBQWrV6/W6wAAkJXcev3QoUPRZpiurq5oJ8zw8PDIyMjY2FjsH//xH//hH/7h7//+7//u7/7uueeee/bZZ1euXPmTn/xk2bJleh0AALKSW69XV1c3NTV1dHT09PQkdsIcPXp0YmIitn379pKSkuLi4q1bt27ZsmXjxo1FRUXvvPNOQUGBXgcAgKzk1uu1tbUtLS3xeLy3t3dwcPDIkSOjo6Pj4+PHjh2Ltbe3t7a2trS0NDU1NTQ01NbWVlVVlZeX7927V68DAEBWcuv1urq61tbWrq6uvr6+xE6YY8eOHT9+PBaPx9vb29va2qJkr6+vr66uPnjw4L59+/Q6AABkJbdeb2hoaG9v7+npGRgYGBkZiXbCTE5Onjx5MtbV1ZWc7I2NjbW1tZWVlfv379frAACQldx6vbGxMR6PHz58eGhoKNoJMzk5eeLEidOnT8e6u7vtXwcAgLzIrdebm5s7Ozv7+vqOHDmS2Alz6tSps2fPxrZv397T09PV1dXZ2dnR0dHS0tLQ0FBdXX3gwAG9DgAAWcmt11tbW7u7u6PNMBMTE8ePHz958uSZM2fOnz8f6+vr6+3tHR0dHRkZGR4e7u/v7+npiX5lkl4HAICs5Nbrr7766urVqwsKCgoLC9etW1dUVLRhw4ZNmzZt3rw5NjAw0N/fPzY2dvTo0SNHjgwODvb29sbj8aamJr0OAABZya3XDxw4UFNTE/3KpM7Ozp6enui3Jg0NDcWGhoYGBwcnJibGx8dHR0eHh4f7+vq6urpisZheBwCArOS/148cOTI0NDQ5OTkxMTE2NnbkyJGBgYHu7u6YXgcAgCzlfz/M6OjokSNHTp48efz48WPHjh09enR4eDgWi3V0dOh1AADISm69/vLLL//ud7+Lkn3NmjWFhYVr165dv379u+++GxsbGxsdHT19+nSU7OPj4yMjI/39/Z2dnXodAACykluv//CHP3zmmWeWLVu2fPnyFStWrFy58tlnn121atVzzz0Xi7bBnD17Nkr2Y8eOjY6ODg4OdnV16XUAAMhKbr3e19c3Ojo6OTl55syZqamp6enpy5cvX7169dq1a7Fo5/oHH3xw7ty506dPnzhxYnx8fHh4+PDhw3odAACykv9eP3HixOTkZOrrr8f8vCkAAGQp/71+6tSpEydOzOj1WCzm9yUBAEC28t/rp0+fPnXqlN9vCgAAC5f/Xj979uyZM2f0OgAALFz+e/38+fPnzp3T6wAAsHD57/Wpqanz58/rdQAAWLj89/rFixenpqb0OgAALFz+e/3SpUsXL17U6wAAsHD57/XLly9funRJrwMAwMLlv9e3b99eUlJSXFy8devWLVu2bNy4saio6J133ikoKNDrAACQlfz3+sTExNjYmPPrAACwcHodAADCZT8MAACEK/+9fu/evbt3796+ffvWrVvXr1+/cuXK9PT0uXPnJicn9ToAAGRFrwMAQLj0OgAAhEuvAwBAuPLf6ylW7tLrAACQk/z3+njB//atN486vw4AAAv3CHu94Vd6HQAAsvLoer3hV/9drwMAQFYeWa+XPBOL6XUAAMjKI+r1tpf/5Jlf2Q8DAADZeUS9XvLyyw32rwMAQJb8vCkAAIRLrwMAQLj0OgAAhOsR/H7TWOwnu/Q6AADkIP+9fu/evbt3785yft3vNwUAgCzpdQAACJdeBwCAcOl1AAAIl14HAIBw6XUAAAiXXgcAgHDlv9d//K1vvfTSS/96+1//5da//OL6L/75yj//0/Q/PX/u+Z82/VSvAwBAVvLf69+OxV566aXY7VjsVix2PRa7EotNx2LnYrHtMb0OAABZ0esAABAuvQ4AAOHS6wAAEC69DgAA4dLrAAAQrvz3el3dvZdeuvuv/3r7X/7l1i9+cf2f//nKP/3T9PPPx2Pf0usAAJCd/Pf6L395Lxa7G5t5gn33T3/q9dcBACA7j67XX3zxRb0OAABZ0esAABAuvQ4AAOHS6wAAEC69DgAA4cp/r3/rW3WxWG0sVh2LHYrFKmOxA7HY+7HY63odAACytQi/L+nbsZdeeum3v/3tb37zm1//+te/+tWvfvnLX/7iF7/Q6wAAkK389/q9e/fu3r17+/btW7duXb9+/cqVK9PT0+fOnZucnNTrAACQFb0OAADhWpRe/9nPfqbXAQBg4ZxfBwCAcDm/DgAA4XJ+HQAAwuX8OgAAhMv5dQAACFf+e/2tt94qKCh4880333jjjdWrV+8vK9frAACQm/z3+p07d27fvn3z5s3r169fvXr1P/7jP/Q6AADkZlF6/Y++/YJeBwCAhct/r9++ffuPvv3C9Rs3Pr527aMrV/Q6AADkLP+9/v1n3/ve3+743sqS/7myONHrf/u3f6vXAQAgW/nv9enpi3/07Rempj44f/7cmTOnnV8HAICc5b/XT5069UfffuH48ePHjh0bHx/X6wAAkLNF6fWTJ0/qdQAAWDivvw4AAOHy+00BACBceh0AAMKl1wEAIFx6HQAAwqXXAQAgXHodAADCpdcBACBceh0AAMKl1wEAIFx6HQAAwqXXAQAgXHodAADCpdcBACBceh0AAMKl1wEAIFx6HQAAwqXXAQAgXHodAADCpdcBACBceh0AAMKl1wEAIFx6HQAAwqXXAQAgXHodAADCpdcBACBceh0AAMKl1wEAIFx6HQAAwqXXAQAgXHodAADCpdcBACBceh0AAMKl1wEAIFx6HQAAwqXXAQAgXHodAADCpdcBACBceh0AAMKl1wEAIFx6HQAAwqXXAQAgXHodAADCpdcBACBceh0AAMKl1wEAIFx6HQAAwqXXAQAgXHodAADCpdcBACBceh0AAMKl1wEAIFx6HQAAwqXXAQAgXHodAADCpdcBACBceh0AAMKl1wEAIFx6HQAAwqXXAQAgXHodAADCpdcBACBceh0AAMKl1wEAIFx6HQAAwqXXAQAgXHodAADCpdcBACBceh0AAMKl1wEAIFx6HQAAwqXXAQAgXHodAADCpdcBACBceh0AAMKl1wEAIFx6HQAAwqXXAQAgXHodAADCpdcBACBceh0AAMKl1wEAIFx6HQAAwqXXAQAgXHodAADCpdcBACBceh0AAMKl1wEAIFx6HQAAwqXXAQAgXHodAADCpdcBACBceh0AAMKl1wEAIFx6HQAAwqXXAQAgXAvr9c1nYrGp9/Q6AAAsjoWeX//tn0zFYtO79DoAACyCPOyHeeVPp2M/0esAAJB/+di//t50LHZ5xR69DgAAeZafnzf9929ejq3Q6wAAkGf56fXuf78ci10t1esAAJBXeXo9x+7L34xdfa1frwMAQD7ls9dXlup1AADIJ+fXAQAgXPavAwBAuLw+DAAAhCsfvR6f/qbXXwcAgEXg95sCAEC4FtrrxcumYn863T2t1wEAIP8W1uubz8RiU+9NTU/rdQAAWAR5ej1HvQ4AAItAr7DHvvAAABJhSURBVAMAQLj0OgAAhEuvAwBAuPQ6AACES68DAEC49DoAAIRLrwMAQLj0OgAAhEuvAwBAuPQ6AACES68DAEC49DoAAIRLrwMAQLj0OgAAhEuvAwBAuPQ6AACES68DAEC49DoAAIRLrwMAQLj0OgAAhEuvAwBAuPQ6AACES68DAEC49DoAAIRrYb2++UwsNvWeXgcAgMWx0PPrv/2TqVhsepdeBwCARZCH/TCv/Ol07Cd6HQAA8i8f+9ffm47FLq/Yo9cBACDP8vPzpv/+zcuxFXodAADyLD+93v3vl2Oxq6V6HQAA8ipPr+fYffmbsauv9et1AADIp3z2+spSvQ4AAPnk/DoAAITL/nUAAAiX14cBAIBw5aPX49Pf9PrrAACwCPx+UwAACNdCe7142VTsT6e7p/U6AADk38J6ffOZWGzqvanpab0OAACLIE+v56jXAQBgEeh1AAAIl14HAIBw6XUAAAiXXgcAgHDpdQAACJdeBwCAcOl1AAAIl14HAIBw6XUAAAiXXgcAgHDpdQAACJdeBwCAcOl1AAAIl14HAIBw6XUAAAiXXgcAgHDpdQAACJdeBwCAcOl1AAAIl14HAIBw6XUAAAiXXgcAgHDpdQAACJdeBwCAcOl1AAAIl14HAIBw6XUAAAiXXgcAgHDpdQAACJdeBwCAcOl1AAAIl14HAIBw6XUAAAiXXgcAgHDpdQAACJdeBwCAcOl1AAAIl14HAIBw6XUAAAiXXgcAgHDpdQAACJdeBwCAcOl1AAAIl14HAIBw6XUAAAiXXgcAgHDpdQAACJdeBwCAcOl1AAAIl14HAIBw6XUAAAiXXgcAgHDpdQAACJdeBwCAcOl1AAAIl14HAIBw6XUAAAiXXgcAgHDpdQAACJdeBwCAcOl1AAAIl14HAIBw6XUAAAiXXgcAgHDpdQAACJdeBwCAcOl1AAAIl14HAIBw6XUAAAiXXgcAgHDpdQAACJdeBwCAcOl1AAAIl14HAIBw6XUAAAiXXgcAgHDpdQAACJdeBwCAcOl1AAAIl14HAIBw6XUAAAiXXgcAgHDpdQAACJdeBwCAcOl1AAAIl14HAIBw6XUAAAiXXgcAgHDpdQAACJdeBwCAcOl1AAAIl14HAIBw6XUAAAiXXgcAgHDpdQAACJdeBwCAcOl1AAAIl14HAIBw6XUAAAiXXgcAgHDpdQAACJdeBwCAcOl1AAAIl14HAIBw6XUAAAiXXgcAgHDpdQAACJdeBwCAcOl1AAAIl14HAIBw6XUAAAiXXgcAgHDpdQAACJdeBwCAcOl1AAAIl14HAIBw6XUAAAiXXgcAgHDpdQAACJdeBwCAcOl1AAAIl14HAIBw6XUAAAiXXgcAgHDpdQAACJdeBwCAcOl1AAAIl14HAIBw6XUAAAiXXgcAgHDpdQAACJdeBwCAcOl1AAAIl14HAIBw6XUAAAiXXgcAgHDpdQAACJdeBwCAcOl1AAAIl14HAIBw6XUAAAiXXgcAgHDpdQAACJdeBwCAcOl1AAAIl14HAIBw6XUAAAiXXgcAgHDpdQAACJdeBwCAcOl1AAAIl14HAIBw6XUAAAiXXgcAgHDpdQAACJdeBwCAcOl1AAAIl14HAIBw6XUAAAiXXgcAgHDl1uutra3d3d0DAwMjIyMTExPHjx8/efLkmTNnzp8/r9cBACBv9DoAAIRLrwMAQLj0OgAAhEuvAwBAuPQ6AACES68DAEC49DoAAIRLrwMAQLj0OgAAhEuvAwBAuPQ6AACES68DAEC49DoAAIRLrwMAQLj0OgAAhCu3Xj906FBjY2N7e3t3d3dfX9/g4ODw8PDo6Oj4+LheBwCAvMmt1/v6+kZHRycnJ8+cOTM1NTU9PX358uWrV69eu3ZNrwMAQN7k1uuvvvrq6tWrCwoKCgsL161bV1RUtGHDhk2bNm3evFmvAwBA3tgPAwAA4bIfBgAAwmU/DAAAhCu3Xj9w4EBNTU1jY2NbW1tnZ2dPT09vb+/AwMDQ0JBeBwCAvNHrAAAQLr0OAADh0usAABAuP28KAADhyq3X169fv3nz5uLi4p07d+7Zs6e0tPT9998vLy8/ePCgXgcAgLzJrdeLioq2bNlSUlKya9euvXv37tu3b//+/eXl5RUVFXodAADyJrde37Bhw9atW3fs2LF79+5ErB88eLCyslKvAwBA3uTc69u2bXvvvff27Nnz/vvvl5WVHThwoKKioqqqSq8DAEDe5NbrmzZtijbDlJaWJsd6dXW1XgcAgLzJrdc3b968ffv23bt3J37MNIr12tpavQ4AAHmTW69v2bJlx44d0WaY6OT6oUOHampq6urq9DoAAORNbr2+bdu2nTt3RpthEjth6urqGhoa9DoAAORNbr1eXFy8a9euffv2HThwILETpr6+vqmpSa8DAEDe5NbrJSUl0eb1gwcPJnbCNDQ0NDc363UAAMib3Hp9x44de/fujTbDJHbCNDU1tbS06HUAAMibnHu9tLS0vLy8srIyOrne2NjY3Nzc2tqq1wEAIG9y6/WdO3dGm9cPHTqU2AnT2tra3t6u1wEAIG9y6/Xdu3fv37+/oqKipqYmsROmvb09Ho/rdQAAyJuce72srKyysrK2tjaxE6ajo6Ozs1OvAwBA3uTW63v37i0vL482wzQ1NUU7YeLxeHd3t14HAIC8ya3XS0tLDx48WF1d3dDQ0NLS0tbWFo/Hu7q6Dh8+rNcBACBvcuv1l19++Xe/+93q1asLCgrWrFlTWFi4du3a9evXv/vuu3odAADyJrde/+EPf/jMM88sW7Zs+fLlK1asWLly5bPPPrtq1arnnntOrwMAQN7k1uuvvvpqdHK9sLBw3bp1RUVFGzZs2LRp0+bNm/U6AADkTW69vm3btp07d5aWlka/4rSqqirxW071OgAA5E1uvV5cXLxr1659+/ZFv+L00KFDNTU19fX1jY2Neh0AAPImt14vKSnZvXv3+++/f/DgwSjWE7/lVK8DAEDe5NbrO3bs2Lt3b7QZJrETJvotp3odAADyJudeLy0tjTbDRCfXE7/lNNNej8fjyfcj+uuMxTTmvWTyBVIvnObqmdyHWS+T8xUztJDr5usIAAA8Yrn1+s6dO/ft23fgwIHoV5xGO2Gi33KaS68n3k5U+1y1PeOSacz6/cBcf01/3UwukPn3G4v6/cDCbxoAgKDk1uu7d+/ev39/RUVFTU1NYidMe3t7PB7PQ6/H5sjrzGN9riPMdfX4fBZy8HnvW4aXWWBtZ/t/MAAACEHOvV5WVlZZWVlbW5vYCdPR0dHZ2bkovZ56+WyTOl9SbzSHm370vZ7tdxQAAAQit17fu3dveXl5tBmmqakp2gkTj8e7u7vn6fVZO3tG+6b294z3pj6M5NCf6/g5JP5caRt/+PuKNI8o/dXnfddc9zzNETK5uayuDgDAY5Rbr5eWlh48eLC6urqhoaGlpaWtrS0ej3d1dR0+fDj/59dntPisD2PeJJ31gOmPk/ltZSU+93cdi3G7i/QoAAB4NHLr9ffffz/aDNPU1NTW1tbR0dHV1dXT09PX1zdnrx87diyHXk8T7sn5nnOvpzmBPdcp7RnBnXqBWe/PjHc9ml5P3NasjyWrA854gAAAPBp56fV4PN7d3X348OE5e/3s2bOz9nr6oJwhnlnWpx4/NnevZ2ve+5Bhjs97H+Z6RJnfz0yOkHmF63UAgMdiRq+vWrVqRp2nrqxYvqysrKyqqqq+vr6lpSX6MdPo5PrAwMCDXr9582b6Xs8qSZMvn2Gvz9Xoc30zMJc0F0u9D+lzPPNvG9Lcn1nvWCYENwDAEye115MDfcZfE71eXl4ebV5vbW2Nx+Pd3d29vb0DAwNDQ0MZnV9Pjel5KzmWNtNnreo0B5/rJlLNuz7jgPF89Pqs71p4bet1AIAnzqy9HjV68tszev3AgQM1NTWNjY1tbW2Jk+uDg4PDw8Pz7F+f0bUJaUJ21jqf0dwz3pXV8dMspl+f9buINL2eujjrSur3Emnuxrwy/HYFAIAwpe5fX/WwWfevV1RU1NXVNTc3d3R0JJ9cHxkZyeX1YZJXMunsNG/MdfxMej2Trk1dz2+vz3vnF0KjAwA8cWb9edM0sR71elVVVbQZprOzs7e3t7+/f2ho6MiRI0ePHo19+umnn3zyyZ07d27dunXjxo2rV69m2OtzLWby3vQpnEn+ZpjOsZQin1Hwc/V65sePZX/nM7TA68p9AIBHb67Xh5kr1qNer66ubmxsbG9v7+7uTuyEGR0dHRsbe9Drt2/fTu7148eP53B+PfUCGb5r8Xp9xnrqGxneYiZ3JofvatLQ6wAAT5zcXs+xtra2ubm5s7Pz8OHDAwMDw8PDIyMjY2NjExMTD/X6zZs3P/7440uXLp0/f/7EiRNRr8/a5fPGbppyTX/5DE91x+c26xM3V6+n3qV5MzfNty7Z3qsMH1FWxwEA4DHKrdcbGhra2tq6u7v7+/sTsX7s2LHjx4/HPvvss2gL+507d6Je//DDD6empk6ePJn8+jCJezBrNc5YTJOVc8V3Ju+ddzGT9eS2Tr1KhkE8Vzpne68AAHjK5NbrTU1N8Xi8t7d3aGgo2gYTxfrJkycf6vXoR04/+uijCxcunD59Onk/DAAAMK/cej06uT4wMBD9jOnExEQU66dPn4599tln0ZaY6FVibty4kXgJdr0OAABZya3XOzs7+/r6hoeHk8+snzlz5ty5c7HPP/880euJLTGXL1+emppasXyZMcYYY4wxZrEnsRNmYmLixIkTp06dOnPmzPnz5z/44IPY559/PmNLzLVr1z766KPp6enz58+fOnXq+PHjExMTR48eHRkZGR4eHhoaGhgY6O/v7+3tPXz4cE9PT/eS9Morr1RUVERv7E/yyiuv/OY3v/mrv/qrV155pf5hiZX9LJjnc//XT8L+/fsryYlPof1P+39KyY8OIAQNDQ2NjY1NTU0tLS2tra1tbW3xeLyrqysR6+Pj48ln1qempi5cuBD74osvEltiEq/q+PHHH0fJ/sEHH5w9e/b06dMnTpyYnJw8duzY+Pj40aNHR0dHjxw5cuTIkajgl6DXXnutrq4ueiO5AF577bV/+7d/+9GPfvTaa691PCyx8rjq5Gni+az8+kmorKysISc+hSqf9v+Ukh8dQAji8XhnZ2dnZ2d3d3dPT0/0e5EGBwejPevRNphTp06dPXv2/PnzU1NTFy9enJ6ejn3xxRepp9gTyX7p0qWLFy9+8MEH586dO3PmzOnTp0+ePHn8+PHJycmJiYmJiYnx8fGxJen1119vbm6O3qhL8vrrr7/22ms//vGPX4dHoo5cPe4PHQBLzhtvvPHmm2+++eabBQUFBQUFb7/99po1awoLC9euXbtu3bp33313w4YNmzZt2rx589atW7dt21ZcXFxSUhL78ssvk0+xRz91Gr1QzMcff3zlypXLly9PT09fvHhxamrq/PnziXA/derUyZMnTyxVb731VkdHR/RGU5K33nrr9ddfX7Zs2Yx1AACWuObm5paWlsRmmOiMe1dXV3d39+HDh/v6+gYGBoaGhqLXX49e1XF8fPyrXo9Osc9I9hs3bly7du3q1asfffTR5cuXL126ND09feHChampqQ8++CBq97Nnz55ZkgoLC7u7u6M32pIUFhYWFBQsX758xjoAAEtce3t71OjRxpiurq6enp7Dhw/39vZGsT44OJiI9aNHj46Pj09MTMR+//vfJyf7vXv3ZiR74kR7crVfvHgxCveo3ZegtWvX9vX1RW90Jlm7du3bb7+9YsWKtQAAkGTd19avX19UVFRUVLRhw4YNGzZs3Lgx2gazZcuW5J0w27dv37FjR+w///M/k5P9008/jZI9+tnTmzdvJpL96tWriWr/8MMPL126FLX70lRUVDQ4OBi90ZOkqKiosLBw5cqVRUVFm7fuMMYYY4wxS3q2fD1bd2zeumPLtve2bHtvy7adW4t3bivZta1kd8n2PSU79m5/b++Onfve27Vv5+79u/aU7d5bvqe0fE/pgdL3D87s9WhXTHKy37p1K1Ht165dSw73qN2Xpg0bNgwPD0dv9CbZsGHD2rVrn3322Q0bNmwt3vm47yYAAAGJEvrKlStXr179+OOPr127dv369Rs3bty8efPWrVu3b9++c+fOJ598cu/evU8//fSzzz77/PPPY//1X/+VJtmjV4xJrfYo3KN2X5o2btw4OjoavTGQZOPGjevXr1+1atXGjRuLt+9+3HcTAICARAkd5XRqqd+9e3dGrH/xxRf/P3pJ7mJWW/+tAAAAAElFTkSuQmCC" alt="" width="845" height="494" />

3.输入文件名

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAxcAAABwCAIAAADjWxoUAAAH5klEQVR4nO3dsY7jxgEGYL6MvXCThzAMV+ncBEHuQRzAgAsX6/oKu3GzRXDNFVcEAQIswBe4cqsDK76Ii4UJHYccDkfDEzXzfYWg/UUOqZVI/kutpO7Tp08vLy8fP3781z//0QEAkEiLAgDIoUUBAOTQoiiu73u5XC6Xy+unRVHc2bZeuVwul982r5YWRSl9379uP9NleEUul8vl7eT1e//+/bt3756enrQoiuj/IpfL5XJ55X54ePzmp+e3b37WoijibFuvXC6Xy2+b1+yPcRyG4cOPv2pRXGnaeKbL8IpcLpfL28nrN47jMAxv32hRFLO28cjlcrm8zbxeD4/d1790X3lFj2LOtvXK5XK5/LZ5tcZxHH7/rfvWuSgAgF0eHrvvnj68vGhRAAA7PI/jMAwvWhQAwC6jFgUAkEGLAgDIoUUBAOTQooCa3N0brcMVvru7AO3SooCalK0gX6DiHLqIfkupBUGjtCjgHq0VguNazmwppYrIZtG5ZhGzeeM/ArtpUUAFFvtNqZYzu7IWXjP4ZlhkfC0KCtOiKM6umS/v9VkXPvcOaiRaFCxq7kmlRVFcc1sRNxJWmUNbQvEWdXmq7IiX8+LDFjlRBzPNPam0KEqZdsrTZXObE1/c7Cl3GV4/8qxqHN2iwsGvHD+c/dCWScva3f9rUZTlb1y+sFmF6g47BVW2RUWanxbFnWpx///v/4/DMLx986sWRREtbkXcVPhku4sWFY6zpsj4KT/ClZrc/3//n/9pUZTQ7hldbmftRFTB596sMM2e3mVbTiTMHj+u1IJoXLv7/9dX9LQoCmpl4+EE+uCc0KEtqvhSwv5XZNjF8Td/hOu196R6eOy+/qX76mctilLa24q4jfgpqFLPw8VyU3zwyx+1KO5Xc0+qHx4ev/np+e0bLQq4J5uvhR1UdI4evOxBSIuCY/0xjsMwfPjRK3rAfTuikaydHLqLc1Gbq61FwbX8XxRQgbVCcE1RmJ3Ziii1iNnisocNB5wlxV86hFb5vyjgzsXbwJm7wtRm1l43zK5Tm3Od+dcCd2Mcx+H337pvnYsCANjl4bH77umDzy4HANjl2TfAAABk8D16AAA5tCgAgBxaFABADi2K4vZ+co9cLpfL686rpUVR3Nm2XrlcLpffNq+WFkUpfd+/bj/TZXhFLpfL5e3k9dOiKKv/i1wul8vlldOiKOtsW69cLpfLb5vXTIuilGnjmS7DK3K5XC5vJ6+fFkVxaxuPXC6Xy9vMq6VFUdzZtl65XC6X3zav19//+6xFAQDs9TctCgAggxYFAJBDiwIAyKFFAQDk0KIAAHJoUcDJRd47vXhTynutj3s/9tHv9A7HT1xi+orlLaK9t7iDFgWcRsYn0Kwd74sc9fs0e4ctPv419ShxMi0KlmlRwHlMR+LEVhH5seyBP33kvXdhccC1RSzmx7Wo8Epkls27CRXSooDzSG8J4QE74wzKoS0qfUGJa75WU1LCuLVF92ktKuMuQyW0KIqz96SIzeN9Fxzmw4kX5wpn37UOi+uTXk1SViOll/RL3TFxqMQ8/SHYdX+pWHsPvRZFae1tRRxrbw/YNWxiv5l1i8gKpIeRW2/Voi570uJdXpu42/q10IjmHn3fRkwp0y51umxuc+IKs1Mdi2dBwmm6zw/eswm66D69ghaVN2NkfXa1qMUxbfVtanf/r0VRVngYg3Tpz5zwYL/Yrq5vUXGJwy72mHSLgyzmkVWKJ13095b4uNjwGxfZLqqlRVFWi1sR5cwKQaS1hHm/p0VtNo/4LPHJEltL5Na1lhP5bcQXlN60EnvY4rrFp6F6Le7/tShKmR3MmtuWKCF+sN88/Iel6poWFbaWReEs8cWl3JoyyK4W1W39QsLJdt3llCk7u4V6TY9s39r+X4uiuFY2Hg4wawabR+Uu2H13n9eFlDqyNllkgkg/SFxixvpsrkPGghKnWbu/kbscmWtzHbhfzT2+WhTFNbcVUc6sRcVvnVWr41pUSn2J33qGFhVvPNnDRm61K2hQcw+6FgWcx6wAhdYm7oJetVYa9h7y17pa/C4kDr5r+mta1KyArq3M3mHTFzolzR1lqZsWBZxHvK/ED/CLM6Y0j82bLtftti0q0il3jVZkfTZv1aKonxYFnMdaAVo7sdStt6hwlrwCNN10Of5iG1hcycia780jjXBtKZHWcmUPC4daFJkLaqBFAecUKQ2L+dQkwl4VmT0cbTZXvIhsJpFFx0tbZCVTZkksMeFkeS1qVw710KIAAHJoUQAAObQoAIAcWhQAQA4tCgAghxYFAJBDiwIAyHFoi9r7YSE+XAQAuBtaFABAjssWNX2IbXjlVfqH+q99CcBlMvuI4cXpAQBOataipjz8CoW871KIhIlfngAAcEazV/RmFSfSeFJEvlwp46uaAABOZLFFXb7o9jqZFgUA8Jm1FtVlvYQ3o0UBANUK36O3dv5p7b+mItUn/j9Vkf+LUqcAgLNLb1Hd0nv0Nt9StzZ9OFQ4fb9ix90DADjImT+7XIsCAM5LiwIAyKFFAQDk0KIAAHKcuUUBAJyXFgUAkEOLAgDIoUUBAOTQogAAcmhRAAA5tCgAgBxaFABADi0KACCHFgUAkEOLAgDIoUUBAOTQogAAcmhRAAA5tCgAgBxaFABADi0KACCHFgUAkEOLAgDIoUUBAOTQogAAcmhRAAA5tCgAgAx/Auq276pYHadaAAAAAElFTkSuQmCC" alt="" />

4.查看显示结果

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAjEAAAJ8CAIAAACAy2cRAAAeJklEQVR4nO3cUZbbvA0G0Ox/VV5aH9rqOCOJ9kSU+JG498En0UxTEBABS/7lP38AAAAAAAAAAAAAAAAAAKCw1+vluOOOO+644xHScuG444477vjY4wO8Xq//RrO97v/guOOOO+54nePjvf7Pcccdd9xxxwdLy4XjjjvuuONjj4+xhbK97v/guOOOO+54neMRzkJx3HHHHXe85vGR0nLhuOOOO+742OMAAAAAAAAAAAAAD/ntf864/33/QWQXX6bx37L9z//4x//hMufDHfl/4L8hXib/8D/bGfw6cvhrZ3/git/2xHa9/u3f/77BrXc+3JT/f0jp2T9uP7K+X52+//3l99d/+Ec4828zo/GbX2r8T84OvgezzPnQN/9n/6v2v/Crny6Wf+iwwbYjhz2LX/mYul/l9stffu3eXB92t8a/tsz50Df/f754W/Db/4sv/yeT5p8+5i35N+3m/ZfPNtVhC+Ojjw3rR0P5bb2+jOHw9/eV/bMr9Oznw635P/zN9l8/xvYjhtnzv4bEDCfG9Eu/3WP77fEP/xQ/7Jtg4zf/4Z89a7Vf/vuNg2ucD3fk/59n0q/+wTXyP6mgDP94V/Ll2Rzo/VRu96+zP9gD1x02l8Zv/vmiXh//hV/9wv7gSufDTflv/E7jN7/5f/+zVv6ns1Vqe01J9ZddINZZ8I0GdPjn/fbgV77sid/Xq/1/9M0vtDvpYufDTfn/cbz91x8H9zn/c5LYBfI/qcT+nxjT1xo7sL0tf/VP8VG74/z4tSsz6ZuB9GV7bR+f63y4L/8XZ1L74L+FSkdZ/X8LZXtNiew732y/H0f2fvz+XBkIcdh6/pz3ryv1OvP+j3wfzxrnw035345/k/mP/0f7g8vkf1JbwrfXoGwHhfJPfrvHzn5n9jwM0c7h96X5MvmNXzvrud/34hnPh5z873+nPZMav/OrkLgoMc+JMf3GP288e+Cib97z7rP6WE/cB/nlb/4qpIHC8/8xntnzvwZ57u9XM+lsr77cK/ilXm8FGgf/7dfOfuewO897Ptyd/8M5d2b/T31ThanzD6d+2+P2u+iPPdDJP8+MITNpO77M+RCS//bu++b3J80//Pnzy3dY2wb48X7t7F/jV/6hJ37Zfb5vUr9qcIudD/fl/5///fb/0WL5hz9/fnPH/MvdaBv8syszo8s/fvZr37w9X+B8uDX/v/rNj//zJfMPAAAAAAAAAAAL8F/szOL15vCnTwdUTDv/8Kglz0IbbCKH/03w9md1vFsj/ywvsdyJMXWy8NJW8rEnquOtzKTKgsq9vf3cXoOC62S9FS3JTBrLTCoot/+vfW9k1XWtzUwaS7brSOz/iTH1s+q6FnZYMnV8jFSXktX/c6/d+llvRWs7q5c6PkOe64ju/0Gh9Lbw0tbTKJY6PkCSa0qse2JMnSy8tMW0K6WOd5PhspT+UdI9Bf/d3Vj+uzu43etvo8Oh5bVz9qNhIS6tkX8AAAAAAAAAAAAAAICqPGwxo8OnZRXxAfYLQdY7Cz2XPp3Dhvjj4dlnIyrEfqkssdyJMV1jj02qXTh1vIk8VxZU7u1t6fYaFNw19tikzKQh5Lmg3P5f4Sby2qtbiZmUQJ7rSOz/iTF1tfDS1tP+PEkpHyDJpWT1/9xrt37WW9Ha9vV63zOqeTcZriO6/weF0tWq61pYu2QKeivprSmx7okxXbbkopZnJo0it2Up/RN8Nj6pw3t3Zz+iF/sF7vXaGR0RHzTqpYJ3s18AAAAAAAAAAAAAAAB2PGwxHcUaS/5Jsd6J6Ln06fi+hrHkv6zEiifGdI2ZNBf1Gkv+Kwsq93apvr0GBdfVqutahp44lvwXlNv/l//QZeGlLUNPHEv+y0rs/4kxdbLqutajJ44l/2Vl9f/ca7eullzUYvTEseS/oOj+HxTKPZZf4Oz0xLHkv7LEcifGdI09Nhf1Gkv+K1PuJ9hj09lqpFhDyD/c6/VmdCx8RbHGkn8AAAAAAAAAAAAAAIAjHrmYQvt5MkV8jFQz3sJnoccAp9D43g0PPj9JqgtKrHhiTJ3YY1P4+F1QivgM+6WgoIpv59/2GhRcD++rYyJm0hD2Sym5/X/VeyPbitZb2tp8njSE/VJTYv9PjKkHe2w6jfNQEe9mv9SU1f9zr90ue1/IMosqwnXS8+yXgqL7f1AonbyOjA6Kb+2LpXy3sl8qS6x1Ykz9rL26NfyokZk0kFRXo+JPk/F8ZlIOqYa7uBcxkbNKKeJjpBoAAAAAAAAAAAAAAOD/fFHKjFRqLPknxXon4norWt5WMrUbQv7LSqx4YkzXrLeitX38biFuJf+VBZV7u1TfXoOCu2aZhRShJ44l/wXl9v8lP3HxSdJc9MSx5L+sxD6ZGNNl78tZbGlL0hPHkv+ysvp/7rVbb6uuaxl64ljyX1B0/w8K5R7LL3B2euJY8l9ZYrkTY7rGHpuLeo0l/5Up9xN8njSdrUzqNYT8w72yPrvjC+o1lvwDAAAAAAAAAAAAAAD8zfMW0zmslzo+4PVmdCyUt+RZ6Ln0uZw1RHV8gO8Wqiyx3IkxXbPeiopoN0dlvYk8VxZU7u1t6fYaFNw1yyykGjNpCHkuKLf/L3kT+T3Liy1tbWZSAnmuI7FJJsZ02Y8VLba6hZlJw0lyKVn9P/fa7TK9bFJm0lgyXEd0/w8KpRO9bFJm0kDSW1Ni3RNjukYvm5SZNIrclqX0D/F50oz2ldqOKOJ9zH54QtbHdzS9/rb/0ZiwanjtjI4IAAAAAAAAAAAAAABgLM9bTEqlBrJTSLHeiei59Ol49zCW78soK7HiiTH1s/bqFqNYQ3gPV1lQube3pdtrUHD9LLmoVSnWEGZSQbn9f+17Jquua1XqNYSZVFZi/0+MqZ9V17Uq9RrCTCorq//nXrt1sthyKlCyIcykgqL7f1AoXa26roUp2RBmUmWJ5U6MqYdV17UwJRvCTKpMuZ8j19NRslG2zCsB3MXumsjrb6PDqUjmAQAAAAAAAAAAAAAA3njYZS5n9VLHZ8gzQdY7C31XylzO6qWOz5DnyhLLnRjTNfbYXMykseS5sqByb9fp22tQcNfYY3Mxk8aS54Jy+/+qN5HP+hr5zkqmlM+Q5zoS+39iTJ2suq61GUhjyXMpWf0/99qtB9dJMzKQxpLnOqL7f1Aonbg/PiMDaSx5rimx7okxXWMmTcdAGkuey1L6J5hJczmrlzo+Q57hdq83o2Phg9dO+zh9yTMAAAAAAAAAAAAAAMCOJy3mcvZwjIdmHuD5JLKsdwq+r2i91a3H9ziMJbGVJVY/MaZr9LK5mEljSWxlQdXfLtK316DgrtHL5mImjSWxBeX2/yXvIOtl0/k4hxTxPj5JKiux7okxXfbj86TFVreqs0qp4N1+7JdhcfC4rP6fe+3Ww3uuV1rXqlwn5ZDqCqL7f1Ao91h+gbP7cg6p4zPkuZTEcifG1NXyC5ydmTSWPFem3A9xz2ciZtJYPk+CJ2TdIaXp9eab4/QlyQAAAAAAAAAAAAAAAEcOn7fwHEaa1077ODc5y7DM86glT7izLub7HQJ92QqV7D6N/eLdwNoSi5sYUyftprbwwufyTSEU6wGukwoKKu729md7DQquEzNpCmZSCDOpjtz+v/a1uZk0hY+fGKnUM+S/msT+nxhTP2bSFN4LcVgUlXqGmVRNVv/PvXbrx0yakTKNYibVEd3/g0LpzUyakTKNYiYVlFjcxJg6MZOmoEwhzKSCFPdR+3RvR1QiR/vzJJV6jJkEd3n9bf+jMWFxovFZq2I94Gy/NPYRAAAAAAAAAAAAAABAAZ4BnEX7YTIPx9zqtTM6Impb8hQ82112XaD9HGofpy+JrSyx+okxdeI6aQpm0lgSW1lQ9bfLhe01KLhOzKQpmEljSWxBuf1/7XtZZtIsPs4hJbuPT5LKSqx7Ykz9mEkTOTsPFz4/Q7ynV6pLyer/uddu/ZhJs3CdlEOqK4ju/0Gh9GYmTeHLOaRqz5DnUhLLnRhTJ2bSFMykseS5MuV+lJk0BTNpLJ8nwe1ef/t4nLHOiqJYz5BkAAAAAAAAAAAAAACAI/vnLTzvEui1s//pmMiK8Yw5EZY84c66W+OvjNKoy9l3OtDX2Rs1b+CWl1jcxJg6MZOmcziQDv9Kd66TCgoq7vb2Z3sNCq4TM2k6ZtJAZlIduf1/7Wvz9rpWXfW8vIcYy0yqJrH/J8bUT2Ndqy55ambSWGZSNVn9P/farR97bCL7ophJD7Nf6oju/0Gh9Ha4tIXXOzUzaTgzqaDE4ibG1MnHNkcOM2k4M6kgxX2Uzycm0r6oVawHmElwl9ffDg/aaVEaDVGl7na2L+wXAAAAAAAAAAAAAACgtsOvBvCwRaxGvQZEU4l9QZAlz8LDDeZ7HGJ9rJdi3ce+qCyx3IkxdWImzUW9hpDnyoLKvb0t3V6DguukvaL11js7M2kIeS4ot/+vfRO5sa5Vlzw1MymBPNeR2P8TY+rncF0Lr3d27c+TVO0BklxKVv/PvXbrx3XSXPZFed8zSnY3Ga4juv8HhdJbe2kLL3xS6jWQ9NaUWPfEmDrx+cRczKRR5LYspX+UmTSXw3t3Zz+iF/sCbvf62+HxYcGxc1avP2l3ulf02hkdEQAAAAAAAAAAAAAAQIjGkxYewgh0+Mysh2YeIM8EWfIsbG8wey/N2dOyjb/SizxXlljuxJg6MZPmYiYNIc+VBZV768vba1BwnRyu6H3VRGkXRcluYiYVlNv/176JfPj5xNmPGK5RFPV6jFTXkdj/E2Pqx0yay9l1rWI9RqpLyer/uddu/TRuSqy32AW4ThpLkuuI7v9BofS2n0l7YyLjSLscinUr6a0pse6JMXXiffdcGte1+7/SkdyWpfSPMpPmYiYNIc9wu8YNOvfuAp0VRaUe4IY2AAAAAAAAAAAAAADAifaTSZ7DyNEoiko9Q55JseSJePa07JhoaGqUafuz2t1KnstKrHhiTJ2YSVM4K5N6PUOeKwuq/nYZsb0GBdeJmTQjM+lh8lxQbv9f+5OVxudJYwLik/2NOyW7mzyXlVj0xJj6+eaDCkLsz8MfR5TsJvJcVlb/z71266e9ovXWu4BGc1Svm8hzQdH9PyiU3sykGW110SufIc+VJZY7MaZO2ptt4YXP5awu6vUMea5MuR/l86QpfFkmJbuPPMO9Xn/bHx8WGUcOi/XjRwPCqkSeAQAAAAAAAAAAAAAAdg4ftvAQRprXzuiIKpJ5Uix5IjYewPzxB4ZTi+Hsi7ISK54YUye+yGsK6jKWbVJZULm3y4jtNSi4Tmy2KajLWLZJQbn9f+07+Iebbe0lz8gnSWOZSWUl7rvEmPrZb7b3I6uuejqKMpaZVFZW/8+9duunvdnWW+8a1OVh9kVB0f0/KJTezKQZqcvD7IvKEsudGFMnZtIU1GUs+a9MuR+1T7ePLgIpynBb2uUfbvH62+GPxkTGEUUZTv4BAAAAAAAAAAAAAAB2zp5M8jRMoMOKKNaTzpIs+TxqyRPu7GnZxl8Z6PB7BNTrMWeD3xuC5SUWNzGmThpLW3jV0/ny7bmS3c11UkFBxd3e/myvQcF1YiZNwUwKYSbVkdv/1742t8em8L4rzuaQkj3Afqkmsf8nxtSPPTaFH2fgfiyp1zPsl2qy+n/utVs/hytab5mza9yjc530JDOpjuj+HxRKb2bSFL68X6dwdzOTCkosbmJMnZhJUzCTQphJBSnuo8ykWXxzv07h7mYmwV1ef/vxozEx0XRWrMPj9HW2Xxr7CAAAAAAAAAAAAAAAoID9ExUetkjWeDhJyR4gw0RY8kT85mnZJRc+KfUay9QvK7HoiTF1osfNpVERxXqAJBcUVPTtbdH2GhRcJ2bSXMyksSS5jtz+v/Y1+35d25FVlzy1s6Io1jPkuZrE/p8YUz+H61p4vbMzk8aS52qy+n/utVs/rpPmcvYe4uk4qpLqOqL7f1Aovfk8aS5m0lhSXVBi0RNj6sRMmouZNJZUF6TojzKT5mImjSXVcJfX3w6PDwuOnbN6/dEoH9HIPwAAAAAAAAAAAAAAQGGH33fnCYw0r53REVUk86RY8kT8+PTlkquelFoMt5VALapJrHhiTJ34bqEpKMRY9kVlQeXeLiO216DgOjGTpqAQY9kXBeX2/7Xv4JtJU/BJ0lj2RVmJ+y4xpn7anyetuurp+JxvLDOprKz+n3vt1s9+Re81WG+9a1CXh5lJBUX3/6BQemsvbeGFT01dHmYmVZZY7sSYOjGTpqAnjiX/lSn3ow7v3Z39iFF8njScfQH3ev1t/6MxYXEi67PWkuQfAAAAAAAAAAAAAADgzdnDSX88hxGp/TCZkt3qtTM6Impb7xRsfFeK59UDndXLd948Q2IrS6x+YkzX6HFzUa+xJLayoOpvF+nba1Bw1+hxc1GvsSS2oNz+X+EOsh6X72ONFOs+PkkqK7HuiTF19b40MynZ2Xm49vmZoLFHWFtW/8+9duunPYTWW++8XCflkOoKovt/UChd7ddlJmX6cg6p1zPkuZTEcifGdNnZXaCPv8PzzKSx5Lky5X5CY4+5FxTITBrL50lwr9fO/qdjIuNEu1hKdjdJBgAAAAAAAAAAAAAA+Fv7uRbPYaT5+BySkt3Kc2AEWe8sbH+Pg42X5uP3NSjZrXxfRmWJ5U6M6ZpvetxTsfCZmTSWmVRZULm3fb69BgV3jZk0l3a93s9S7mAmFZTb/yvcyzKT5vLjXuv+ILeS6joS+39iTF0dLm3h9c7u7D27kj1DnkvJ6v+51279nK1ovZWuoXETSckeIMl1RPf/oFC6aqxr1SVP7fAW696AyGqQ25oS654Y02XtRS255Kl9rIiS3Up6y1L6JzRuAZ0dYaCP9To7SBff5B/4d40bPm4EBWrfoFOyu7lBCgAAAAAAAAAAAAAAsPPNwy5jIuNc+8kkJbuPJBNkvbNw39raxxnu7A3EmGiKkfbKEsudGNM1ZtKkFGgIaa8sqNzb29LtNSi4a8ykSSnQENJeUG7/r3AT+Wx1a696Ro3Pk8YEVJJs15G4vxJj6spAmkjjDbt6PUOeS8nq/7nXbv0YSHNp10XV7ibDdUT3/6BQujKQpmMmDSS9NSXWPTGmywykGTXu3e3/SkdyW5bSP+Gsl+lx4XyeNIR9Afd67bSPM9xZXVTqAfYFAAAAAAAAAAAAAADAztnDFh7CyKReA3k+iSzrnYL7vtY+zljqNZbEVpZY/cSYrtHj5qJeY0lsZUHV3y7St9eg4K75spcts97ZmUljSWxBuf2/wh3kw9WtveTpfJxD6nUfnySVlVj3xJi62i9t7fXO66wu6nW39/RKdSlZ/T/32q2fxorWW+zUXCflkOoKovt/UChdfVzXqgufzpdzSL2eIc+lJJY7MabLvvkMacmFz8hMGkueK1PuJ+hxc1GvsXyeBPd67Rz+aFh87JzVRb2eIckAAAAAAAAAAAAAAAB/+/hci0cx0ijWcPs8ez6MAdY72z4+/2+PpWl8d4NiPeDsgeXGX1lDYlkTY7rGTJrLx1oo1jPMpIKCyrr15e01KLhrvtlayyx2AWZSiHaeVWEluf2/wr2R99Wd3SNioPddcVgXxXpGI89KsKTE/p8YU1dn10wLL3k6P87Aw3utD4ZT19kbAvlfVVb/z71266dxE2+9xc6rfa/18Ah3cJ1UR3T/Dwqlq8PWtjcgMv5mJoVo51kVlpRY1sSYLvu4qCVXPSkzKUS7EKqwJGV9wjd7SSWi+DwpgZkEt2jfoHPvLpNiDXSWZ8kHAAAAAAAAAAAAAACq+viwhUcuAh0+LatYj5FkIqx3Ip49f77eSpdx9sBs4690ZPCXlVj0xJiuMZMmZSaNJcMFBRV9e1u0vQYFd42ZNKl2gZTvbjJcR27/r3DN/j6TKqx3Xo26KNkDJLmaxH6YGFNX70s7+zMhDouy9vkZRZ6ryer/uddu/bgXNBfXSWNJch3R/T8olK4+rmvVhc/Le4ixZLigxKInxnTZ2V2gj7/DQO0CqdfdZLggRX/CWS/zeVI4M2ksGYZbvHb2PxoWHEc+1kvJbnWWfwAAAAAAAAAAAAAAgKoaD1t4AiOWugxkX5BivROx8fz/4Xc6MJynNceyL8pKrHhiTNeczaT1VroYBRrCdzhVFlTu7W3p9hoU3DVm0qQUaAgzqaDc/l/hnsmPmVRhyZNSlCHMpLISm2FiTF39+DDp8LMlQqjIEGZSWVn9P/farZ/2ZltvvbNTkSHsi4Ki+39QKF3t12XvhVORIeyLyhLLnRjTZYeLsvfCqcgQ9kVlyv2Exh7zeVIyFRlly7wSQH+vncOfjgmOI4168QyZBwAAAAAAAAAAAAAAeHP4sEv7uSXGUpGx5J8U652IZ9/j4DtUYvkegbHkv6zEiifGdM03s2e9Vc/Le4Wx5L+yoHJvl+rba1Bw15hJc9ETx5L/gnL7f4VPVvarW3u909ETx5L/shL7f2JMXblIyqcnjiX/ZWX1/9xrt34MpCnoiWPJf0HR/T8olK7O1rXqeuelJ44l/5Ulljsxpssai1pyvVPTE8eS/8qU+wntPaYGgbaiqM4Q8g83eu38+OmYsGjKuqNdj/wDAAAAAAAAAAAAAAC8aTycdHic4RRlLPknxXon4tlDsh6ejeV7BMaS/7ISK54Y0zVm0lzUZSz5ryyo3Nul+vYaFNw1ZtJc1GUs+S8ot/9X+HDlfXXuUQTSE8eS/7IS+39iTF3tl7b2emekJ44l/2Vl9f/ca7d+DgfS2Y8YRU8cS/4Liu7/QaF01RhIZ7/AEOoylvxXlljuxJguO1yUvZdJXcaS/8qU+wlne8zei+We6ljyDzd67Rz+aFh8HFGUseQfAAAAAAAAAAAAAADgzdlzSB5OytR+bky9HiPVjLfeWfjN9zist+p5Nb5fw3uIJ0l1QYkVT4zpGt8tNJePdVGpZ5hJBQVVfDv/tteg4K4xk6ZmJg3x3g1YXm7/r3BvxEyaiM+ThjjbI6wtsf8nxtTV2WdIa696Ro2KqNTdzKSasvp/7rVbP4d3gX4snCiuk5539r6NhUX3/6BQuvq4rlUXPrvDdxID4ijjdWR0UDwksdaJMV32zaKWXPiMfhTCTBpIqqtR8Sc0epz75oHMpBxSDf21b0S4NRGoXSw3lB4g1QAAAAAAAAAAAAAAAG8aT1p4/CLWYV3U6wGeTCLIemeh73GYTuMNxI8/0N3H79FgYYnlTozpmrM9Zu+FaxdIvW4iz5UFlXt7W7q9BgXXlZk0CzNpCHkuKLf/L38T+fDG3eFfGc5MSiDPdST2/8SYOtmvS48Lp17DSXIpWf0/99qtK9dJEzGTxpLhOqL7f1Ao99gWqMeFM5MGkt6aEuueGNM1Z71MjwtnJo0it2Up/RMavexsPpFgXxT1eoDZD7d7vTn80YCYOPf62/5HY8Kq4bUzOiIAAAAAAAAAAAAAAIDh2g9beAIj09nDZOp1Nw8nEWS9s7D9PQ42XqCzp2UP/0xfvsehssRyJ8Z0zcc9tt6S19AunKrdRJ4rCyr39rZ0ew0KriszaRZm0hDyXFBu/1/+XpbPkyZiJiWQ5zoS+39iTJ001rXkehfQ/jxJ1R4gyaVk9f/ca7euXCdN5PAu648TlfvIcB3R/T8olHscdroBcfBJuy6qdivprSmx7okxXfPxc4j1lrwGM2kUuS1L6Z9gJk2qUSklu8/H/QJc9Xpzdtzey9Goi0rd7bUzOiIAAAAAAAAAAAAAAIDhvnk+aUxknDt8ZlaxHmBfEGS9s/DsuXTPq8c6ewNx+Gf6si8qSyx3YkzXmEmTahdIvW4iz5UFlXt7W7q9BgXXlZk0CzNpCHkuKLf/L38TubG0hVc9KTMpgTzXkdj/E2PqpL2uJZc8u/bnSUr2AEkuJav/5167dXW4qCVXuoB9Xd73jKrdTYbriO7/QaHcwy2gWbRLo3C3kt6aEuueGNM17VtAz8bCL5hJo8htWUr/hLOZ5IIp3OG9u7Mf0Yt9Abd7vTk8mHX/tLxGXVTqbvYFAAAAAAAAAAAAAADATvthFw9hpGnURbEeYF8QZL2z8Oy5dM+rZ2rU5ax2dGRfVJZY7sSYrjGT5qJeY8lzZUHl3q7Tt9eg4Lo6W9eq652OmTSWPBeU2/+Xv4lsIE3HTBpLnutI7P+JMXVytq5V17uGww+TDv/KHSS5lKz+n3vt1pXrpIm0h5CS3U2G64ju/0Gh3MNYmsK+HGbSk6S3psS6J8Z0zVkv0+Nind1l/fg7dCG3ZSn9E8ykuTTqclY7OrIv4HavN98cZ6DXzv6nYyKroZ1/AAAAAAAAAABY1H8A7dmH502D/wkAAAAASUVORK5CYII=" alt="" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAioAAAFtCAIAAACm59atAAAT3ElEQVR4nO3dUbaquBIA0DP/UTm099HrsbySlKiBCpW9P1ye6EVSlaQEGvvvDwAAAAAAAAAAAAAADnrsxO2ke5sUyTqPeUGaeqPNEnYvL3nZp8maeCqxXVly9usNPuXnXpSfXGK7spzsb1N6eywzCpWfW2tWI7k7j9guaIr1v+TZ3t5ZbGe359c7EpKy85gXy0rOe8lh99ydI8+ZQXMcKj8XMC+Wlbb+T3HwdQnn4m7E14V0Qr2CWdb/8qNN+bmX5yOevcw9W4MgLyU53fVG20uPeidw6nX8po7kRbLOY16sTLoHc+3nXpSfXOYFjNQ7V+MczpyC02tOvl1AeAEAAAAAAAAAAAAAgEvEv9Ti/oZpxTf9JOzQSgSZBPXGXNCjR+cHeMjV+6IQ/MlA5sWykjNeb8D1elSvp8UoPynEeWU56d6+bG6PZYad8nNTcYKk7yTKz4KmWP9LnlgPrvr8Fe1yDUfOmjKc8rOs5MWw5Fr83J2X572XmEEzI/XG52yUn2Wlrf9THHxdYuuXaTY5Rz8pzIsFzbL+lx9tys9dxBmRr5OYFytLTne90dabTqbZ5OIEyddJxHll0j1YcIHHtZ+ZKT9Zel/RgI8Fl9TSrrbR9/hXsz1t59YgyAAAAAAAAAAAAAAAwPkeO3E76YKkyNRlxJmr1RtzvR65i35OR36ZQrJO5QvZspKTXm/MHelRvV7fV6/8yNHFBHxBOUnfvuxsj2UGn/JzL8rPJAR8HVOs/yUPut9e3SnW32Jeyk/JITonQV5N8uQqObebFw96b2AqL7l7m0oGEuHVpK3/Uxx8XaJ3bofZxJmSuLOJ8DpmWf/Ljzmr2C3s8yJxFxPhBSUnvd6Y8yX6do6cI5W4s4nwgiR9sPiCgXDPJigzrv1cSYRhgOCSmjk2m8dO89WcnVtDEH8AAAAAAAAAAAAAAIBxgvtI3Nwwp7fJkrILiDBXqzfmej0K7q4nUS8v8nUZBX5ZyUmvN+aUn3s5khfJuoAgLygn6duXne2xzOBTfu5F+ZmEIK9jivW/5EF3cLWgd2KHeQRZ41TivJrk9b9q+Wk+31qK9bcShz6JxHk1aev/FAdfl2hWo6qdvTW1J5dQr2OW9b/8mOuVnPIdv5deOqTpMkK9oOSk1xtzvTKj/EwryIU0XUaoFyTpg/Wu/Sg/c4rzIk2XEWoYoHdJ7fEkYbdoeey8vJqzWysJ4g8AAAAAAAAAAAAAADBOcB+JOxtm5j6tRIJMgnpjrtej4BcQyHXkhlMpO8+j88NUlJec8XoD7kj5Cd5GFuUnhTivLCfd25fN7bHMsFN+birOiHydxLxY0BTrf8kT670LBqbZ5IKMSNZ5zItlJa//VcvPkefFel1AMyMydTblZ1lp6/8UB1+X2Fed544zD0c/KZSfBc2y/pcfbb0Olu/47cQZka+TKD8rS053vdF2cDrV6/jduVaXQpxXJt2D9a73PP8p6BNSfrKYFzBMcEmt8FWu+3r8q9metnNrEGQAAAAAAAAAAAAAAOAq7vu5ETf3pBN/EpQcc727uN3dPaHgVyq4hnmxLL/5NtjBH3mr1/Gbkpdc4r+ynHRvx9rbY5lhp/zci7zkEv8FTbH+lzzn/hzQ4MROsV7fl7zkEv9lJa//VctPs+qYZnN6SZa8XMy8WFba+j/Fwdc5etPJNJvW8zSQl4uZFwuaZf2vN9qUn1uTl4uZFytLTne90ab83Jq8XMy8WJl0j9e89vPXL0Xkkpdc4g8j9a6qVbrKVYm85BJ/AAAAAAAAAAAAAADgKsF9DO5vmFPvJi23pFxDkLlayTEX/NCOtWxCzbz4MZjLmBfL8ptvg73tUb0u16D85BLhBeUkffuysz2WGXzKz00pP7lEeB1TrP8lD7qfA9rsWrH+ltG89tN7ieEEeTXJ63/V8vPco2BRYyq97wrydQ1xXk3a+j/Fwdc53p60KdPTYhz95BLkdcyy/tcbc8rPTcWJk7WzifCCkpNeb8wpPzel/OQS4QVJ+niu/dyR8pNLhGGM5lW1x79y9oydXl4k6xrmBQAAAAAAAAAAAAAAcKHmHQxubphTLy/ydQ1xJkfJAbd1Kvj5g5Idv6NeXuTrGuK8suR01xttvR6ZZnNSfnKJ88py0r0daG+PZYad8nMvB/MiXycxLxY0xfpf8oTvc0CDrhXrdRnNvEjWZYR6Hcnrf9XyE1zyCRpJt89LvfE5M6FeStr6P8XB1znenkwo09NiHKrmEuR1zLL+1xtzcfmp198a3uZF4k4lvGtKznu9YRfUm3qdreHICVK5O4/YLkvqx2uWHMvZnHp5ka9riDMMtr+q9thJ2zmeBHmRrAuYFwAAAAAAAAAAAAAAwLWadzC4uWFOQV4k6zLizNVKjrnmnfPu7p5TkJfeLyAwlu9ky0pOer0x1+uR8jOnXl7k62IivKCcpG9fdrbHMoPvYEfK9PfulJ9JiPA6plj/Sx50Pwf04JEQ81B+sojwapLX/6rlp3n9oPkqU4kTd+2+LEeEV5O2/k9x8HWOI8tWmc5WEidOys4mwuuYZf2vN+YOLlv1On5r+3QoPxcT4QUlJ73emOstW5azaR05QpWvs4nwgiR9vOYlBMvZnIK89HLHGQQZxmheVXs8ydktdh47+1dz9mwZQfwBAAAAAAAAAAAAAABGi+9gcHPDVN7edCJfF2j+7pE7gThRybEV3y1vRk3l7a9RyNfZejf8Np9TSXJm6w2stz2ynE1F+ZlEnAgpKCknrduU3h7LDK+4I8+9ZgZHVj35uoDys44p1v+S53afA9qbQsW6fHe9vMjXlZSf1SSv/1XLz3OPms+LdbmA5jiUrysF9abeKsGf/9vpGY58gy7T2Rre5ki+LtAs/y8LBTXMsv7XG1VB+dm7fO94JV+TiMMr+CUlp7XeqArOIcSNpJCvSSg/C5LW8d6etxH0eSg/k2iefOu9BHT1Ttc4mTOhICPydYEgyMIOAAAAAAAAAAAAAACM1ruDwU0k0wpu+knYm/WIM1crOeaad2uX7GkNvRsem88ZTplfVnLS6425Xo/q9bSYoPzs/2Q4EV5QTtK3LzvbY5nBp/zclPKTS4TXMcX6X/Kg+zmgLydwSva3DOUnlwivJnk9LLkc76vOy5M/M21KQb2pN0onJMKrSVv/pzj4OsfBb81l+lvGPiPP00O+zibC65hl/a835pSfm4ozIl9nE+EFJSe93pjrlR/XEian/OQS4QVJ+niu/dxR8+Rb7yWGE2QYo3lVLe1SG6HHv/Yv5ezWMoL4AwAAAAAAAAAAAAAAjNa7g8GdDdNq3nYqX5cRZ65Wcsy9/aGdkr2+r94Np83nDKfMLys56fXGXK9H9XpaTFB+9n8ynAgvKCfp25ed7bHM4FN+bkr5ySXC65hi/S950P0c0P0JnJJdrkH5ySXCq0leDEuuxc2qE7QziaDe1BulExLh1aSt/1McfJ2jt4r5Nj25fUaep4d8nU2E1zHL+l9vzCk/NxVnRL7OJsILSk56vTGn/NyU8pNLhBck6eP1rvG49jOz5sm33ksMJ8gwRu+qWtrVNvoe/9q/lLNbywjiDwAAAAAAAAAAAAAAMFrvDhL3N0zLTVq5xJmrlRxzzbvl/ejOtHo3nDafM5wyv6zkpNcbc0d6VK/XBcTfD6TsbCK8oJykb192tscyg0/5uSnlJ5cIr2OK9b/kQfdzQJtdK9bfMpSfXCK8muT1v2r5iS8bFOtvGfG1H1k7mwivJm39n+Lg6xy+RN9U84vCy0DlPCK8jlnW/3pjTvm5qTg1Enc2EV5QctLrjTnl56aUn1wivCBJHy+49iPc0wqu0snaBQQZxuhdVTPHJvT41/6lnN1aRhB/AAAAAAAAAAAAAACA0Xo3/bi5YTaPnew9WpHIk6DkmGveLe/nD+YkEen8usSykjNeb8D1eqT8zEkicpkXK8tJ93asvT2WGXbKz71IRC7zYkFTrP8lz7Y/B7Q3tYp1+dZc9cml/Cwred6VnPYvPdrPrmL9vbsgWVxA+VlW2vo/xcHXOYLp5OhnflJzMeVnQbOs//VG28ETbvU6XoO8XMy8WFlyuuuNNuXnXuQll/ivTLrHO3LCTdwn4dpPOielYaTmVbXHk5zdokVS0ok/AAAAAAAAAAAAAABwleZ9DO4vmVmQL/dvXeB4/GGMkgOreRe3u+un1asxzT/9esVwH8WfSpLTWm9U9XpkOk1O+cml/CwoJ63bl53tsczwUn5u6rvlTx5HUX7WMcX6X/LE7nNAgxNuxXpdQJyR5quSONA+mL0jTmpIXv+rlp9m1XlpLNbrAoKMNFdGGRyrV+DFuaq09X+Kg69zBEc5z+Eu098yehn5qCzxNUc/65hl/a83sA6eZKvX8bv77vSaPI4STxxxLik5rfVGlfJzU8G376BRHkdRfhYkreO9nHDbPxf0CR1c/iyLJ1F+YIzeVbVKV7nKePyr2fjyNaKXX74gzgAAAAAAAAAAAAAAwCWC+0X+3PczMXlJZF6QoN6YC+7W7t05Ty73NuYyL5aVnPHaA65Ze5p/kk5GUpgXK8tJ9/Zlc3ssOeyUnxuRkRTmxYKmWP9rn/SI51XVXt+XjKQwL5aVvP4rP8xDRlKYF8tKW/+nOPg60747ptnkZCSFebGgWdb/qqNN+bkdGUlhXqwsOd1VR5vyczsyksK8WJl0n6IZ1q1R0CckKVnMCxipN5HqXeUq4PGv7N1ZkcgDAAAAAAAAJwgu3f+4hZMc/Li3/0H2kH+yoPMGhvjHbh3P39eZLz7C+LmB42mL/yvnyxz5xC86FTzh2affAB4tzbf1nvB3/3h+t840O3uL/nJUM51v33nk/b/rjb94RO5fejuCnx+v6dotfBH/vw9DJ/5v1Yjn8Z356NVp+8tg+4yeneOD29/etn/Sa3z7QcHyemRP9ttpvrm35Ukmz6fxP/5P3n7QR/GPy+GtTRjPT2dE7MjOv331x/6+vP/t9guPt/F60floTHy05SEObvzRqS6P3Reiv91C2ev74/P1tBm6YDvBbk8yoOMgNPe/16ne9kfFPwj7rU0Yz492Kd5UvJG3fbmsv9tmv+jFDJJ3r/fxn7b/8s5fBOPsox0LGvcjO/5XBz+39+fbbU41oL8YJ58OoVHx/+L9tzBJPL9Ydocv3M0t/Njft3s1ZKhnydnDbY3eHg/mfv+25xX/ERreiyN7ePANwah6eRIP36CnByfbd/ufIt6TOM5vx8nw+L/d4TuaJ57x8O7981jznfEG989/7O/bft1xvG3d3B4TdjXIaG9vjrenhP7thz6PxWDQ98boy6tHhm9v33p/Pg+Ij1Izv+M9uiD+BUwVz/jPUVvozd/9q83t/NLf4J8cfOdsgkUm+eMffb1NvW0529tP/GJtCubApx0MZtfLFOpNnmCXshwfJ0HQgh6dF/+7my2e8Z+jtvA8TeLGtxv5Yjx8FO35x1tvql70wX/9g69PY/rRKvl7n4NVb+95f5qjdr+3wXaamzq4z71e/PWn0EeBzRVnPHhPEJlR8Z82aN+ZMJ5vx21zI7Hgc/f7//JkbH+D9x9MwVS2gGyPOTt8cJR88Z7gX53U2/gTm+/pte8bv5hdx3cv2JOPApvr67F0ZGL/GP9pg/ajeeJ59gR5eU9cfoL3fLd7R9aWX7afJXk/D4b1izXx+o59sfwF5SfusvKzN7b8jI3/tEH70TzxvL78PNtvYWB/D87cr7efaLr9PPj9opnOIP0vbz6j218vf8323rD+a3W2+a+OfESw/bf/ajbDy8/A+E8btB9NFc/e9nubPejgrv7tJs6Q/sZ/Bttp7iFvxGMoyOjbPAVvHuLINo8M3Jf23oA7Pl3j6RRsp/nm5ksz+Dr+nw6VT+N/cN/uaLZ4/jIyD46fuHdH3v9Rfx87vZfiPeG9t6EPht3blvME46n5zoP/duvvy5gLtraO5th4O1qaszQYVOIfqxTP7+bvc3tz+fqbtb+c6OLUHvy4XpnZtxyc2EbwRw4GUPwPqhTPHz/6pa7M318AAAAAAAAAAADgZuL/jl67du3ata/WfpHZuq1du3bt2nPbz/V4PP774O1x/0S7du3ata/TfqnH/2nXrl27du3Xma3b2rVr1649t/1026duj/sn2rVr1659nfar9T5Vu3bt2rWv2X6R2bqtXbt27dpz2wEAAAAAAAAAAACY0X//9efw/wb0ZYNDtr/fiP90FeCuthX8l6X8bbGZv/w83hn1QQBrebu8/rjIPpex/dZGlZ8L9v/InwAc1VtARy2sj91R1Njy09zCwKqg/LAWY5rLPP5/jeflWKFZLX78oJftn3F0EjQO2b7yw9mSB5UxzWXeHv2cdxj0+8afS1fnrNtPtS3e7O8bh72cQfXyxdPg5gK9Y5HHv8dA3225Vx5ePv3Hj9hvauxHHP8TvjbF+u9bFVfal5mXgjFk+73N/ljemtsPnn/9KQf/hB8lr//KD1eKy8/Lk6+3v3+y/9zft98zZPtH/oQfpa3/26dujwY3p+qt3X/jisTzYO5t/xfNLQycOEFVM0MZaJb135jmGr2R9tz+4zTYHy68bPzrLe+38FxNf9xsc/tv/4TfJQ8qY5oLHKk98TuPf0rviGf40c+og6p4+70/4XcGFYsaPvRfTin8nVx+hmwz2JryAzDAkZLw4wobH/FMfvTztrYpPwDfiC+WDL+UEp+I+2WbzeenHloNP8sHsIr9F/m95jtHfeiQzW5loFdBv65Db/+V2gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwpv8BAZzlVb2a1bMAAAAASUVORK5CYII=" alt="" />

由于文本中存放的是代码,所以行数较多,最后可以看到总计的结果。

本程序的不足:

1.我使用的是C语言来编写的本程序,但是现在确定文本中中文单词的特征,因为中文单词和英文单词不同,中文单词不需要空格来分隔开,所以不好统计。

2.目前还是只能通过控制台来进行输入输出,目前正在自学JAVA语言,正在学习GUI的使用和设计,我将会对此程序进行修改,最终使其可以显示在更为美观的窗口下。

#include <stdio.h>
#include <stdlib.h> void wordCount(char *fileName); int main()
{
    char fileName[50];
    printf("\t\t\t*****************************************************************\n");
    printf("\t\t\t*\t\t\t  欢  迎  使  用\t\t\t*\n");
    printf("\t\t\t*****************************************************************\n");
    printf("\t\t\t*\t\t\t请输入要打开的文件名:\t\t\t*\n");
    gets(fileName);
    FILE *fp;
    if(fp=fopen(fileName,"r")==NULL)
    {
        printf("\t\t\t*\t\t\t    文件不存在\t\t\t        *\n");
        return 0;
    }
    printf("\t\t\t*****************************************************************\n");
    wordCount(fileName);
    fclose(fp);
    printf("\t\t\t*****************************************************************\n");
    printf("\t\t\t*\t\t\t  感  谢  使  用\t\t\t*\n\n\n");
    return 0;
} void wordCount(char *fileName){
    int i;
    int lineChar=0;       //本行字符数
    int lineWord=0;       //本行单词数
    int blankLine=0;      //空行数
    int noSignal=0;       //判断是否为符号而不是字母
    int charNum=0;        //总字符数
    int wordNum=0;        //总单词数
    int lineNum=0;        //行数
    char str[300];        //估计一行最多字符不会超过300个,所以将字符串区间定义为300
    char ch;
    FILE *fp;
    fp=fopen(fileName,"r");
    printf("\t\t\t*\t行数     \t本行字符数   \t本行单词数\t\t*\n");
    while(fgets(str,300,fp)!=NULL)              //读取一行字符串
    {
        for(i=0;i<strlen(str);i++)
        {
            ch=str[i];
            if((ch>='a'&&ch<='z')||(ch>='A'&&ch<='Z')||(ch=='.'))
            {
                !noSignal&&lineWord++;            //当字母前是符号时,这是一个新单词的开始
                !noSignal&&wordNum++;
                noSignal=1;                       //当前字符不再是符号
            }
            else noSignal=0;                      //当前字符为符号
            if(ch!='\n'&&ch!='\r')
            {
                charNum++;                        //字符统计
                lineChar++;
            }
        }
        lineNum++;                                //行数统计
        if(lineChar<=1)
        blankLine++;                              //空行统计
        printf("\t\t\t*\t %d\t\t   %d\t\t   %d\t\t\t*\n",lineNum,lineChar,lineWord);  //打印本行统计结果
        noSignal=0;                               //本行统计结束,复位操作
        lineChar=0;
        lineWord=0;
    }
    printf("\t\t\t*总计:\t字符数:%d\t空行数:%d\t行数:%d\t单词数:%d\t*\n",charNum,blankLine,lineNum,wordNum);
}

WordCount程序实现的更多相关文章

  1. 软件工程:Wordcount程序作业

    由于时间的关系,急着交作业,加上这一次也不是那么很认真的去做,草草写了“Wordcount程序”几个功能,即是 .txt文件的读取,能计算出文件内容的单词数,文件内容的字符数,及行数. 这次选用C来做 ...

  2. 标志数在wordcount程序中的应用与拓展

    wordcount程序要求测出文本中的单词数,字符数和行数. 设计思路: 将文件读入,逐字检测,检测到空格单词数加一,检测到回车行数单词数加一,如果既不是回车也不是空格则说明是字符,字符数加一 编程时 ...

  3. Hadoop入门实践之从WordCount程序说起

    这段时间需要学习Hadoop了,以前一直听说Hadoop,但是从来没有研究过,这几天粗略看完了<Hadoop实战>这本书,对Hadoop编程有了大致的了解.接下来就是多看多写了.以Hado ...

  4. [转] 用SBT编译Spark的WordCount程序

    问题导读: 1.什么是sbt? 2.sbt项目环境如何建立? 3.如何使用sbt编译打包scala? [sbt介绍 sbt是一个代码编译工具,是scala界的mvn,可以编译scala,java等,需 ...

  5. Hadoop下WordCount程序

    一.前言 在之前我们已经在 CenOS6.5 下搭建好了 Hadoop2.x 的开发环境.既然环境已经搭建好了,那么现在我们就应该来干点正事嘛!比如来一个Hadoop世界的HelloWorld,也就是 ...

  6. Yarn集群的搭建、Yarn的架构和WordCount程序在集群提交方式

    一.Yarn集群概述及搭建 1.Mapreduce程序运行在多台机器的集群上,而且在运行是要使用很多maptask和reducertask,这个过程中需要一个自动化任务调度平台来调度任务,分配资源,这 ...

  7. Mapreduce概述和WordCount程序

    一.Mapreduce概述 Mapreduce是分布式程序编程框架,也是分布式计算框架,它简化了开发! Mapreduce将用户编写的业务逻辑代码和自带默认组合整合成一个完整的分布式运算程序,并发的运 ...

  8. Hadoop集群测试wordcount程序

    一.集群环境搭好了,我们来测试一下吧 1.在java下创建一个wordcount文件夹:mkdir wordcount 2.在此文件夹下创建两个文件,比如file1.txt和file2.txt 在fi ...

  9. Eclipse环境搭建并且运行wordcount程序

    一.安装Hadoop插件 1. 所需环境  hadoop2.0伪分布式环境平台正常运行 所需压缩包:eclipse-jee-luna-SR2-linux-gtk-x86_64.tar.gz 在Linu ...

  10. 09、高级编程之基于排序机制的wordcount程序

    package sparkcore.java; import java.util.Arrays; import java.util.Iterator; import org.apache.spark. ...

随机推荐

  1. VB6 XArrayDB | Xarray ReDim 用法

    用法解释 官方解释:http://helpcentral.componentone.com/nethelp/truedblist8/default.htm#!redimmethodxarraydb.h ...

  2. mfc 类

    知识点 类的概念 类的相关术语 定义类 使用类 一.类的概念 简单的说类就是数据与函数综合体,它是用户自定义类型. 二.类的相关术语 类的实例称为对象. 类在定义中隐式地包含数据和操作函数,这种思想称 ...

  3. c++ 文件操作 重新命名 删除

    教学内容:  l 文件重命名rename l 文件删除remove   文件重命名rename int rename( const char *oldname, const char *newname ...

  4. Linux下开发python django程序(设置admin后台管理上传文件和前台上传文件保存数据库)

    1.项目创建相关工作参考前面 2.在models.py文件中定义数据库结构 import django.db import modelsclass RegisterUser(models.Model) ...

  5. HDU - 3874 Necklace (树状数组、离线处理)

    题目链接:Necklace 题意: 给出一串珠子,每个珠子有它的value,现在给出n(n<=5e4)个珠子的value(1<=value<=1e6),现在给出m(1<=m&l ...

  6. AgileRepository - 一个基于接口的Repository快速开发库

    AgileRepository 这是一个可以帮助你快速开发Repository的lib.有点像SpringData JPA根据方法名.注解来自动生成查询方法的功能. 对于一些简单的查询,只需要定义接口 ...

  7. linux 查询管道过滤,带上标题字段

    linux查询过滤, 带上标题字段例: 一个简单的查询 ps -e | grep httpd 上面经过grep 过滤后, 标题没了, 但是为了看上去更方便,有标题字段看起来更方便一些, 那么可以按下面 ...

  8. @RestController注解

    @RestController注解其实就是@@Controller和@ResponseBody的组合:RESTFUL风格 看下源码: 当@ResponseBody放到Controller类上,改Con ...

  9. JavaWeb项目学习教程(2) 系统数据库设计

    最开始本来想写一个管理系统,因为考虑到期末来临,我女朋友就可以看着教程然后学一些东西,然后可以自己慢慢手敲代码.但无奈自己也太懒,两个月过后,我才开始继续写这个博客,而现在我都已经开学了.不过博客还是 ...

  10. Post请求和Get请求;@RequestBody和@RequestParam

    1.@RequestBody用于Post请求,接收json数据,例如:@RequestBody User user 例如:@RequestBody Map map .不要用于Get请求. 2.@Req ...