BZOJ3504 CQOI2014危桥(最大流)
如果只有一个人的话很容易想到最大流,正常桥连限流inf双向边,危桥连限流2双向边即可。现在有两个人,容易想到给两起点建超源两汇点建超汇,但这样没法保证两个人各自到达自己要去的目的地。于是再超源连一个人的起点和另一个人的终点跑一遍,两次都满流说明有解。证明脑(bu)补(hui)。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 55
#define S 0
#define T 51
int n,s1,t1,c1,s2,t2,c2,p[N],tmpp[N],t,tmpt,ans;
int d[N],cur[N],q[N];
struct data{int to,nxt,cap,flow;
}edge[N*N<<],tmpedge[N*N<<];
void addedge(int x,int y,int z)
{
t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].cap=z,edge[t].flow=,p[x]=t;
t++;edge[t].to=x,edge[t].nxt=p[y],edge[t].cap=,edge[t].flow=,p[y]=t;
}
bool bfs()
{
memset(d,,sizeof(d));d[S]=;
int head=,tail=;q[]=S;
do
{
int x=q[++head];
for (int i=p[x];~i;i=edge[i].nxt)
if (d[edge[i].to]==-&&edge[i].flow<edge[i].cap)
{
d[edge[i].to]=d[x]+;
q[++tail]=edge[i].to;
}
}while (head<tail);
return ~d[T];
}
int work(int k,int f)
{
if (k==T) return f;
int used=;
for (int i=cur[k];~i;i=edge[i].nxt)
if (d[k]+==d[edge[i].to])
{
int w=work(edge[i].to,min(f-used,edge[i].cap-edge[i].flow));
edge[i].flow+=w,edge[i^].flow-=w;
if (edge[i].flow<edge[i].cap) cur[k]=i;
used+=w;if (used==f) return f;
}
if (used==) d[k]=-;
return used;
}
void dinic()
{
while (bfs())
{
memcpy(cur,p,sizeof(p));
ans+=work(S,N<<);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3504.in","r",stdin);
freopen("bzoj3504.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
while (scanf("%d%d%d%d%d%d%d",&n,&s1,&t1,&c1,&s2,&t2,&c2)>)
{
s1++,t1++,s2++,t2++;c1<<=,c2<<=;
memset(p,,sizeof(p));t=-;
for (int i=;i<=n;i++)
{
char c;
for (int j=;j<=n;j++)
{
c=getchar();
while (c<'A'||c>'Z') c=getchar();
if (c=='O') addedge(i,j,);
else if (c=='N') addedge(i,j,N<<);
}
}
memcpy(tmpp,p,sizeof(p));
memcpy(tmpedge,edge,sizeof(edge));
tmpt=t;
addedge(S,s1,c1);
addedge(S,s2,c2);
addedge(t1,T,c1);
addedge(t2,T,c2);
ans=;
dinic();
if (ans<c1+c2) cout<<"No\n";
else
{
memcpy(p,tmpp,sizeof(p));
memcpy(edge,tmpedge,sizeof(edge));
t=tmpt;
addedge(S,s1,c1);
addedge(S,t2,c2);
addedge(t1,T,c1);
addedge(s2,T,c2);
ans=;
dinic();
if (ans<c1+c2) cout<<"No\n";else cout<<"Yes\n";
}
}
return ;
}
BZOJ3504 CQOI2014危桥(最大流)的更多相关文章
- bzoj3504: [Cqoi2014]危桥--最大流
题目大意:给张无向图,有两个人a,b分别从各自的起点走向各自的终点,走A,B个来回,图里有些边只能走两次,求问是否能满足a,b的需求 按照题目给的表建图 S连a1,b1 a2,b2连T 跑最大流看是否 ...
- BZOJ 3504: [Cqoi2014]危桥 [最大流]
3504: [Cqoi2014]危桥 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1407 Solved: 703[Submit][Status] ...
- BZOJ.3504.[CQOI2014]危桥(最大流ISAP)
BZOJ 洛谷 这种题大多是多源多汇跑网络流.往返\(a_n/b_n\)次可以看做去\(a_n/b_n\)次,直接把危桥能走的次数看做\(1\). 先不考虑别的,直接按原图建模:危桥建双向边容量为\( ...
- [BZOJ3504][CQOI2014]危桥(最大流)
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3504 分析:很容易想到最大流,但如果S-a1,S-b1,a2-T,b2-T这样跑S-T最大流判 ...
- bzoj3504: [Cqoi2014]危桥
题意:给出一个图,有的边可以无限走,有的只能走两次(从一头到另一头为一次),给定两个起点以及对应的终点以及对应要走几个来回,求判断是否能完成. 先来一个NAIVE的建图:直接限制边建为容量1,无限制为 ...
- bzoj3504: [Cqoi2014]危桥 网络流
一种网络流建图的思路吧,改天最好整理一波网络流建图思路 #include <bits/stdc++.h> using namespace std; int n,h,t,a1,a2,an,b ...
- Luogu3163 [CQOI2014]危桥 ---- 网络流 及 一个细节的解释
Luogu3163 [CQOI2014]危桥 题意 有$n$个点和$m$条边,有些边可以无限次数的走,有些边这辈子只能走两次,给定两个起点和终点$a_1 --> a_2$(起点 --> 终 ...
- 3504: [Cqoi2014]危桥
3504: [Cqoi2014]危桥 链接 分析: 首先往返的可以转化为全是“往”,那么只要将容量除以2即可. 然后S向a1连边容量为an(除以2之前为2*an),S向a2连边容量为an,b1,b2向 ...
- bzoj千题计划137:bzoj [CQOI2014]危桥
http://www.lydsy.com/JudgeOnline/problem.php?id=3504 往返n遍,即单向2*n遍 危桥流量为2,普通桥流量为inf 原图跑一遍最大流 交换b1,b2再 ...
随机推荐
- 关于自动化测试框架,所需代码技能,Java篇——参数配置与读取.
前言: 说在前边.像我这种假期不出去浪,在这里乖乖写文章研究代码的人,绝壁不是因为爱学习,而是自己不知道去哪玩好,而且也不想玩游戏,看电视剧什么的,结果就无聊到看代码了…… 至于如何解读代码,请把它当 ...
- cookie记住密码/base64加密(js控制)
cookie记住密码/base64加密(js控制) • 配置cookie //设置cookie function setCookie ( name, value, expdays ) { var ex ...
- 通过ftp同步服务器文件:遍历文件夹所有文件(含子文件夹、进度条);简单http同步服务器文件实例
该代码主要实现,指定ftp服务地址,遍历下载该地址下所有文件(含子文件夹下文件),并提供进度条显示:另外附带有通过http地址方式获取服务器文件的简单实例 废话不多说,直接上代码: 1.FTPHelp ...
- Siki_Unity_3-6_UI框架 (基于UGUI)
Unity 3-6 UI框架 (基于UGUI) 任务1&2&3&4:介绍 && 创建工程 UI框架: 管理场景中所有UI面板 控制面板之间的跳转 如果没有UI框 ...
- 32bit 天堂2 windows 2003 server架设教程
安装环境::[注意:本教程newauth要用不加密的版本] windows 2003 enterprise server 100用户license Microsoft sql server 2000 ...
- dstat 性能测试工具常用选项
dstat常用的选项有: -c 显示cpu使用情况 -d 显示磁盘使用情况 -g, 显示页面数据 -i 启用中断数据 -l 平均负载统计(1分钟,5分钟,1 ...
- NO.4:自学python之路------内置方法、装饰器、迭代器
引言 是时候开始新的Python学习了,最近要考英语,可能不会周更,但是尽量吧. 正文 内置方法 Python提供给了使用者很多内置方法,可以便于编程使用.这里就来挑选其中大部分的内置方法进行解释其用 ...
- centos下部署禅道流程
原文摘录:https://www.jianshu.com/p/71e9dab130a5 下面将我在Linux系统下搭建禅道服务的过程分享给大家. 第一步:下载禅道 Linux中可以用以下命令来下载安装 ...
- HDU 1556 Color the ball (一维树状数组,区间更新,单点查询)
中文题,题意就不说了 一开始接触树状数组时,只知道“单点更新,区间求和”的功能,没想到还有“区间更新,单点查询”的作用. 树状数组有两种用途(以一维树状数组举例): 1.单点更新,区间查询(即求和) ...
- centos下配置gitosis服务器遇到的困难
这篇博客主要讲的是在centos下配置gitosis遇到的问题. 背景:centos7.2 64 :gitosis2.0 1.困难1 1)产生的问题及原因.gitosis没有安装成功,没有出现fini ...