【洛谷】P1445 没占到1444的愤怒
继续洛谷刷水日常,突然遇到一道不是很水的题目……
https://www.luogu.org/problem/show?pid=1445
题意:给定n(1<=n<=1000000),求方程1/x+1/y=1/n!的正整数解的个数。
思考了5min后,就去看题解了……
Qrc:这也太弱了……
【思路】
原方程可变形为:
xy/(x+y)=n!
xy-(x+y)n!=0,配方后,得:
(x-n!)(y-n!)=(n!)^2
所以求出(n!)^2的因数个数即可,又由于因数定理(正整数的因数个数等于其所有质因数幂次+1的乘积),只要求出其质因数及幂次即可
又:(n!)^2的每个质因数的幂次都是n!的质因数的2倍
同理,n!的质因数幂次是1~n每个数质因数幂次的“和”
所以对1~n中所有数求出质因数及幂次即可
先筛出1~n中所有的质数
再对每一个质数判断,1~n中,它作为质因数出现了几次?
下面贴上代码:
1 #include<cstdio>
2 const int M=1e9+7;
3 int n,primes[5000001],num=0,Ans=1;
4 bool isntprime[10000001]={1,1};
5 void prime1(){//线性筛法
6 for(int i=2;i<=n;++i){
7 if(!isntprime[i])primes[++num]=i;
8 for(int j=1;j<=num&&i*primes[j]<=n;++j){
9 isntprime[i*primes[j]]=1;
10 if(!(i%primes[j]))break;
11 }
12 }
13 }
14 int main(){
15 scanf("%d",&n);
16 prime1();
17 for(int i=1;i<=num;++i){
18 int prime=primes[i],c=0;
19 for(long long j=prime;j<=n;j*=prime)
20 c+=n/j;//必须对prime的若干次幂都进行一遍,这样不会漏掉包含其多次幂的数
21 Ans=1ll*Ans*(c*2+1)%M;
22 }
23 printf("%d",Ans);
24 return 0;
25 }
【洛谷】P1445 没占到1444的愤怒的更多相关文章
- 洛谷P1445 [Violet] 樱花 (数学)
洛谷P1445 [Violet] 樱花 题目背景 我很愤怒 题目描述 求方程 1/X+1/Y=1/(N!) 的正整数解的组数,其中N≤10^6. 解的组数,应模1e9+7. 输入输出格式 输入格式: ...
- 【题解】洛谷P1445 [Violet]樱花 (推导+约数和)
洛谷P1445:https://www.luogu.org/problemnew/show/P1445 推导过程 1/x+1/y=1/n! 设y=n!+k(k∈N∗) 1/x+1/(n!+k)=1 ...
- 洛谷P1445 樱花
题意:求 1/x + 1/y = 1/(n!)的正整数解个数. 解:神仙...... 设(n!) = t 打表发现 x ∈ [t+1 , 2t] 反正就是拿到式子以后乱搞一通然后发现得到了这个很美观的 ...
- 【洛谷 P1445】 [Violet]樱花(唯一分解定理)
做了题还是忍不住要写一发题解,感觉楼下的不易懂啊. 本题解使用latex纯手写精心打造. 题意:求\(\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}\)的正整数解总数. 首先 ...
- 洛谷 P1445 [Violet]樱花
#include<cstdio> #include<algorithm> #include<cstring> #include<vector> usin ...
- 洛谷P1198 [JSOI2008]最大数
P1198 [JSOI2008]最大数 267通过 1.2K提交 题目提供者该用户不存在 标签线段树各省省选 难度提高+/省选- 提交该题 讨论 题解 记录 最新讨论 WA80的戳这QwQ BZOJ都 ...
- [洛谷P1198/BZOJ1012][JSOI2008] 最大数 - 树状数组/线段树?
其实已经学了树状数组和线段树,然而懒得做题,所以至今没写多少博客 Description 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数 ...
- 洛谷 P1039侦探推理
/* 枚举罪犯和星期几,那么所有人说的话是真是假一目了然. 首先一个人不能既说真话又说假话. 即: I am guilty. I am not guilty. 因为非真即假,所以直接判断impossi ...
- 洛谷 P1640 [SCOI2010]连续攻击问题
洛谷 一句话题意: 每个武器有两种属性,每种武器只能选择一种属性,从属性1连续递增才算攻击,求最大连续攻击次数. 因为同学告诉我这是二分图最大匹配,自然就往那个方向去想. 那么怎么建图呢? 每个武器只 ...
随机推荐
- ava8并发教程:Threads和Executors
原文地址 原文作者:Benjamin Winterberg 译者:张坤 欢迎阅读我的Java8并发教程的第一部分.这份指南将会以简单易懂的代码示例来教给你如何在Java8中进行并发编程.这是一系列教 ...
- Gartner 2018 年WAF魔力象限报告:云WAF持续增长,Bot管理与API安全拥有未来
Gartner 2018 年WAF魔力象限报告:云WAF持续增长,Bot管理与API安全拥有未来 来源 https://www.freebuf.com/articles/paper/184903.ht ...
- Atcoder Yahoo Programming Contest 2019 简要题解
A-C 直接放代码吧. A int n,k; int main() { n=read();k=read(); puts(k<=(n+1)/2?"YES":"NO&q ...
- 【python】爬虫实践
参考链接 https://blog.csdn.net/u012662731/article/details/78537432 详解 python3 urllib https://www.jianshu ...
- 【CF938G】Shortest Path Queries(线段树分治,并查集,线性基)
[CF938G]Shortest Path Queries(线段树分治,并查集,线性基) 题面 CF 洛谷 题解 吼题啊. 对于每个边,我们用一个\(map\)维护它出现的时间, 发现询问单点,边的出 ...
- uoj132/BZOJ4200/洛谷P2304 [Noi2015]小园丁与老司机 【dp + 带上下界网络流】
题目链接 uoj132 题解 真是一道大码题,,,肝了一个上午 老司机的部分是一个\(dp\),观察点是按\(y\)分层的,而且按每层点的上限来看可以使用\(O(nd)\)的\(dp\),其中\(d\ ...
- jumpserver 堡垒机搭建
1.摘要 Jumpserver 是一款由python编写开源的跳板机(堡垒机)系统,实现了跳板机应有的功能.基于ssh协议来管理,客户端无需安装agent. 特点: 完全开源,GPL授权 Python ...
- digitalworld.local: MERCY靶机入侵
0x01 前言 MERCY是一个致力于PWK课程安全的靶机系统.MERCY是一款游戏名称,与易受攻击的靶机名称无关.本次实验是攻击目标靶机获取root权限并读系统目录中的proof.txt信息 靶机的 ...
- 单点登录(十二)-----遇到问题-----cas启用mongodb验证方式登录后没反应-pac4j-mongo包中的MongoAuthenticatInvocationTargetException
cas启用mongodb验证方式登录后没反应 控制台输出 2017-02-09 20:27:15,766 INFO [org.jasig.cas.authentication.MongoAuthent ...
- php 百家姓
private $surname = array('赵','钱','孙','李','周','吴','郑','王','冯','陈','褚','卫','蒋','沈','韩','杨','朱','秦','尤' ...