Warming Up

Before we talk about multivariate Gaussian, let's first review univariate Gaussian, which is usually called "Normal Distribution":
\[
X \sim N(\mu,\ \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{ -\frac{(x-\mu)^2}{2\sigma^2}}
\]
where \(\mu=\mathbb{E}(X)\), \(\sigma = \mathrm{var}(X)\).

Now, if we have bivariate form of \(X = [x_1\ x_2]\), and also assume \(x_1\) and \(x_2\) are statistically independent, then we can get the joint distribution:
\[
\begin{align*}\notag
\mathrm{P}(x_1,x_2) &= \mathrm{P}(x_1)\mathrm{P}(x_2) \\
&=\frac{1}{\sqrt{2\pi}\sigma} e^{ -\frac{(x_1-\mu_1)^2}{2\sigma^2}} \frac{1}{\sqrt{2\pi}\sigma} e^{ -\frac{(x_2-\mu_2)^2}{2\sigma^2}} \\
&= \frac{1}{\left( \sqrt{2\pi} \sigma \right)^2} \exp \left\{ -\frac{(x_1-\mu_1)^2}{2\sigma^2} - \frac{(x_2-\mu_2)^2}{2\sigma^2} \right\} \\
&=\frac{1}{\left( \sqrt{2\pi} \sigma \right)^2} \exp \left\{ -\frac{1}{2} \left[ (x_1-\mu_1) \sigma^{-2} (x_1-\mu_1) + (x_2-\mu_2) \sigma^{-2} (x_2-\mu_2) \right] \right\}
\end{align*}
\]

Rewrite formula into matrix form:
\[
\frac{1}{\left( \sqrt{2\pi} \sigma \right)^2} \exp \left\{ -\frac{1}{2} \begin{bmatrix} (x_1-\mu_1)^\mathtt{T} \sigma^{-2} & (x_2-\mu_2)^\mathtt{T} \sigma^{-2} \end{bmatrix}
\begin{bmatrix}
(x_1-\mu_1) \\ (x_2-\mu_2)
\end{bmatrix} \right\} \\
= \frac{1}{\left( \sqrt{2\pi} \sigma \right)^2} \exp \left\{ -\frac{1}{2}
\begin{bmatrix} (x_1-\mu_1)^\mathtt{T} & (x_2-\mu_2)^\mathtt{T} \end{bmatrix}
\begin{bmatrix} \sigma^{-2} & 0 \\ 0 & \sigma^{-2} \end{bmatrix}
\begin{bmatrix} (x_1-\mu_1) \\ (x_2-\mu_2) \end{bmatrix}
\right\}
\]

Let \(\begin{bmatrix}\sigma^{-2} & 0 \\ 0 & \sigma^{-2}\end{bmatrix} = \Sigma^{-1},\mathbf{x}=\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \mathbf{\mu}= \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}\), then we also get \(\Sigma = \begin{bmatrix} \sigma^2 & 0 \\ 0 & \sigma^2 \end{bmatrix}\) and \(\det(\Sigma)=\sigma^4\). Plug \(\Sigma,\mathbf{x},\mathbf{\mu}\) in equation above and we obtain:
\[
\frac{1}{\left( \sqrt{2\pi} \right)^2 \det (\Sigma)^{1/2} } \exp \left\{ -\frac{1}{2}
(\mathbf{x-\mu})^\mathtt{T} \Sigma^{-1} (\mathbf{x-\mu}) \right\}
\]
This is exactly the probability density distribution (PDF) of bivariate Gaussian distribution.

Multivariate Gaussian Distribution

In general, the PDF of multivariate Gaussian distribution (a.k.a. multivariate normal distribution, MVN) is as below:
\[
\frac{1}{\left( \sqrt{2\pi} \right)^d \det (\Sigma)^{1/2} } \exp \left\{ \frac{1}{2}
(\mathbf{x-\mu})^\mathtt{T} \Sigma^{-1} (\mathbf{x-\mu}) \right\}
\]


Written with StackEdit.

Gaussian Models的更多相关文章

  1. deep learning 的综述

    从13年11月初开始接触DL,奈何boss忙or 各种问题,对DL理解没有CSDN大神 比如 zouxy09等 深刻,主要是自己觉得没啥进展,感觉荒废时日(丢脸啊,这么久....)开始开文,即为记录自 ...

  2. A Statistical View of Deep Learning (II): Auto-encoders and Free Energy

    A Statistical View of Deep Learning (II): Auto-encoders and Free Energy With the success of discrimi ...

  3. Growing Pains for Deep Learning

    Growing Pains for Deep Learning Advances in theory and computer hardware have allowed neural network ...

  4. 混合高斯模型(GMM)推导及实现

    作者:桂. 时间:2017-03-20  06:20:54 链接:http://www.cnblogs.com/xingshansi/p/6584555.html 声明:欢迎被转载,不过记得注明出处哦 ...

  5. 混合拉普拉斯分布(LMM)推导及实现

    作者:桂. 时间:2017-03-21  07:25:17 链接:http://www.cnblogs.com/xingshansi/p/6592599.html 声明:欢迎被转载,不过记得注明出处哦 ...

  6. 基于EM的多直线拟合

    作者:桂. 时间:2017-03-22  06:13:50 链接:http://www.cnblogs.com/xingshansi/p/6597796.html 声明:欢迎被转载,不过记得注明出处哦 ...

  7. Reading lists for new LISA students(转)

    Research in General How to write a great research paper Basics of machine learning http://www.iro.um ...

  8. 基于EM的多直线拟合实现及思考

    作者:桂. 时间:2017-03-22  06:13:50 链接:http://www.cnblogs.com/xingshansi/p/6597796.html 声明:欢迎被转载,不过记得注明出处哦 ...

  9. ICLR 2014 International Conference on Learning Representations深度学习论文papers

    ICLR 2014 International Conference on Learning Representations Apr 14 - 16, 2014, Banff, Canada Work ...

随机推荐

  1. Android Studio3.0 配置AndroidAnnotation注解框架

    前言android学习了一段时间后,想要开发一款App,但是一些复杂的代码写多了实在麻烦,就到网上找了找简便的方法,于是在众多的注解开发框架中,找到了Android Annotation这个框架,这里 ...

  2. Day7 Tomcat和servlet

    web服务器 1)        什么是web服务器 硬件:性能强大的计算机(无显示屏) 操作系统: linux 软件:web服务器软件(将数据放置在服务器上就可以被外部访问) web应用程序 2)  ...

  3. 443 D. Teams Formation

    http://codeforces.com/contest/879/problem/D This time the Berland Team Olympiad in Informatics is he ...

  4. 轻量级IOC容器:Ninject

    Ninject是一个快如闪电.超轻量级的基于.Net平台的依赖注入框架.它能够帮助你把应用程序分离成一个个松耦合.高内聚的模块,然后用一种灵活的方式组装起来.通过使用Ninject配套你的软件架构,那 ...

  5. Y310 线刷

    以下操作都是在XP 32位 系统下执行,64位以及WIN7 WIN8均未测试. ① 下载并安装 spreadtrum_android_24027_32.exe 驱动.(如驱不上,请使用最新版本的驱动精 ...

  6. XCode iOS之应用程序标题本地化

    1.XCode项目中创建一个.strings 扩展名的文件:打开File > New > File,选择Resource中Strings Fils,如图:点击下一步,为文件命名为(强烈建议 ...

  7. linux 学习第十八天学习(DNS分离解析、DHCP配置、邮件服务配置)

    DNS分离解析技术 yum install bind-chroot systemctl restart named systemctl enable named vim /etc/named.conf ...

  8. 检测ip和地区

    获取当前位置所在省份城市和所用网络IP <!DOCTYPE html> <html> <head> <meta charset="utf-8&quo ...

  9. TIDB数据集群部署

    TIDB 数据库集群 一.TiDB数据介绍 1.1.TiDB数据简介 TiDB 是 PingCAP 公司设计的开源分布式 HTAP (Hybrid Transactional and Analytic ...

  10. 如何防止网页被植入广告,内容被监控-HTTPS

    前几天一朋友说访问网站页面底部怎么出现小广告了呢,内容有点不雅,朋友截图发给我,调侃我说怎么放这种广告,我一听纳闷,网站运行伊始,从来没有投放过任何广告,更别说不雅广告了. 最近还遇到一个问题就是,网 ...