Main Contributions:

  1. A brief introduction about two different methods (retrieval based method and generative method) for image captioning task.
  2. The authors implemented the classical model, Show and Tell, and gave analyses based on the experiments.

Excerpts:

  1. To achieve this goal, Show & Tell model is created by hybridizing two different models. It takes the image as input and provides it into Inception-v3 model. At the end of Inception-v3 model, a single fully connected layer is added. This layer will transform the output of Inception-v3 model into a word embedding vector. We input this word embedding vector into series of LSTM cells.
  2. For any given caption, we add two additional symbols as the start word and stop word. Whenever the stop word is encounted, it stops generating the sentence and it marks end of the string.
  3. Show & Tell model uses Beam Search to find suitable words to generate captions.

[Paper Reading] Image Captioning using Deep Neural Architectures (arXiv: 1801.05568v1)的更多相关文章

  1. Paper Reading - Show and Tell: A Neural Image Caption Generator ( CVPR 2015 )

    Link of the Paper: https://arxiv.org/abs/1411.4555 Main Points: A generative model ( NIC, GoogLeNet ...

  2. Paper Reading - Show, Attend and Tell: Neural Image Caption Generation with Visual Attention ( ICML 2015 )

    Link of the Paper: https://arxiv.org/pdf/1502.03044.pdf Main Points: Encoder-Decoder Framework: Enco ...

  3. [Paper Reading] Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

    论文链接:https://arxiv.org/pdf/1502.03044.pdf 代码链接:https://github.com/kelvinxu/arctic-captions & htt ...

  4. [Paper Reading] Show and Tell: A Neural Image Caption Generator

    论文链接:https://arxiv.org/pdf/1411.4555.pdf 代码链接:https://github.com/karpathy/neuraltalk & https://g ...

  5. Training Deep Neural Networks

    http://handong1587.github.io/deep_learning/2015/10/09/training-dnn.html  //转载于 Training Deep Neural ...

  6. Adversarial Defense by Restricting the Hidden Space of Deep Neural Networks

    目录 概 主要内容 Mustafa A., Khan S., Hayat M., Goecke R., Shen J., Shao L., Adversarial Defense by Restric ...

  7. Paper Reading:Deep Neural Networks for YouTube Recommendations

    论文:Deep Neural Networks for YouTube Recommendations 发表时间:2016 发表作者:(Google)Paul Covington, Jay Adams ...

  8. 为什么深度神经网络难以训练Why are deep neural networks hard to train?

    Imagine you're an engineer who has been asked to design a computer from scratch. One day you're work ...

  9. [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization

    About this Course This course will teach you the "magic" of getting deep learning to work ...

随机推荐

  1. DevOps 解读

    本文为 转载文章, 非原创 DevOps DevOps(Development和Operations的组合词)是一种重视“软件开发人员(Dev)”和“IT运维技术人员(Ops)”之间沟通合作的文化.运 ...

  2. python 小技巧同时迭代多个列表,多变量同时运算

    再来一个大家很熟悉的 dict={"a": "b","c": "d"}k,v=dict.items()print(k,v ...

  3. (未解决)记录一次登录&jmeter,留下的一地鸡毛

    一般的登录校验过程是这样的:客户端发起请求,拿到服务器给的“令牌”,再次发起请求,服务器验证“令牌”是否正确,从而返回给客户端是登录成功还是登录失败.然后我按照这个流程,用jmeter去模拟了登录过程 ...

  4. .Net操作Excel公式实现

    //传入Excel公式,获取公式计算结果private string GetValue(string formula) { string result = ""; try { Ob ...

  5. JS数组的赋值

    var test=[1,2,3,4,5,6,7];  var arr=test;  arr.splice(2,1);  alert(test);//1,2,4,5,6,7 JS数组实质上是对象.因此, ...

  6. Oracle透明网关访问SQLServer数据库

    针对oracle数据库不同实例之间的数据访问,我们可以直接通过dblink访问,如果oracle数据库想访问mysql/sqlserver等数据库的数据,我们可以通过配置oracle透明网关实现异构数 ...

  7. maven tomcat plugin 踩坑记

    今天在自己家里的电脑上改一个项目,安装的是社区版的 IntelliJ Idea, 没有办法安装 Tomcat 插件来启动项目.尝试用 jettry runer 启动,结果报 java.lang.Inc ...

  8. linux 虚拟机 磁盘空间压缩

    /usr/bin/vmware-toolbox-cmd disk list /usr/bin/vmware-toolbox-cmd disk shrink / init 0

  9. SFTP Using Chilkat Active component

    https://www.example-code.com/vb6/sftp_uploadBandwidthThrottle.asp Private Sub Command1_Click() ' Imp ...

  10. mysql my.init

    CLIENT SECTION 端口默认是3306,可以修改为别的端口 编码格式默认是latin,要修改成utf8 注意是utf8,不是utf-8 SERVER SECTION 端口也是默认3306 编 ...