任何事物和人都不是以个体存在的,它们都被复杂的关系链所围绕着,具有一定的相关性,也会具备一定的因果关系,(比如:父母和子女,不仅具备相关性,而且还具备因果关系,因为有了父亲和母亲,才有了儿子或女儿),但不是所有相关联的事物都具备因果关系。

下面用SPSS采用回归—线性分析的方式来分析一下:居民总储蓄 和 “居民总消费”情况是否具备相关性,如果具备相关性,那相关关系的密切程度为多少。

下面以“居民总储蓄”和“居民总消费”的调查样本做统计分析,数据如下所示:

第一步:我们先来分析“居民总储蓄”和“居民总消费”是否具备相关性 (采用SPSS 19版本)

1:点击“分析”—相关—双变量, 进入如下界面:

将“居民总储蓄”和“居民总消费”两个变量移入“变量”框内,在“相关系数”栏目中选择“Pearson",(Pearson是一种简单相关系数分析和计算的方法,如果需要进行进一步分析,需要借助“多远线性回归”分析)在“显著性检验”中选择“双侧检验”并且勾选“标记显著性相关”点击确定, 得到如下结果:


从以上结果,可以看出“Pearson"的相关性为0.821,(可以认为是“两者的相关系数为0.821)属于“正相关关系”同时“显著性(双侧) 结果为0.000, 由于0.000<0.01,所以具备显著性,得出:“居民总储蓄”和“居民总消费”具备相关性,有关联。

既然具备相关性,那么我们将进一步做分析, 建立回归分析,并且构建“一元线性方程”,如下所示:

点击“分析”--回归----线性” 结果如下所示:

将“因变量”和“自变量”分别拖入框内  (如上图所示)从上图可以看出:“自变量”指 “居民总储蓄” ,  "因变量”是指“居民总消费”

点击“统计量”进入如下界面:

在“回归系数”中选择“估计” 在右边选择“模型拟合度” 在残差下面选择“Durbin-watson(u), 点击继续按钮

再点击“绘制图”在“标准化残差图”下面选择“正太概率分布图”选项

再点击“保存”按钮,在残差下面选择“未标准化”(数据的标准化,方法有很多,这里不介绍啦)

得到如下结果:

结果分析如下:

1:从模型汇总b  中可以看出“模型拟合度”为0.675,调整后的“模型拟合度”为0.652,就说明“居民总消费”的情况都可以用该模型解释,拟合度相对较高

2:从anvoa b的检验结果来看 (其实这是一个“回归模型的方差分析表)F的统计量为:29.057,P值显示为0.000,拒绝模型整体不显著的假设,证明模型整体是显著的

3:从“系数a”这个表可以看出“回归系数,回归系数的标准差,回归系数的T显著性检验 等,回归系数常量为:2878.518,但是SIG为:0.452,常数项不显著,回归系数为:0.954,相对的sig为:0.000,具备显著性,由于在“anvoa b”表中提到了模型整体是“显著”的

所以一元线性方程为:居民总消费=2878.518+0.954*居民总储蓄

其中在“样本数据统计”中,随即误差 一般叫“残差” :

从结果分析来看,可以简单的认为:居民总储蓄每增加1亿,那居民总消费将会增加0.954亿

提示:对于回归参数的估计,一般采用的是“最小二乘估计法”原则即为:“残差平方和最小“

SPSS-相关性和回归分析(一元线性方程)案例解析的更多相关文章

  1. SPSS--回归-多元线性回归模型案例解析

    多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程 为: 毫无疑问,多元线性回归方程应该为: 上图中的 x ...

  2. 【Python五篇慢慢弹(5)】类的继承案例解析,python相关知识延伸

    类的继承案例解析,python相关知识延伸 作者:白宁超 2016年10月10日22:36:57 摘要:继<快速上手学python>一文之后,笔者又将python官方文档认真学习下.官方给 ...

  3. SQL Server 连接问题案例解析(1)

    SQL Server 连接问题案例解析(1) 转载自:http://blogs.msdn.com/b/apgcdsd/archive/2015/04/27/sql.aspx?CommentPosted ...

  4. 【java设计模式】(6)---迭代器模式(案例解析)

    设计模式之迭代器模式 一.java迭代器介绍 1.迭代器接口 在jdk中,与迭代器相关的接口有两个:Iterator 与 Iterable. Iterator:迭代器,Iterator及其子类通常是迭 ...

  5. 案例解析|政府信息化的BI建设应用 .

    一.行业背景 某建设厅综合监管信息化平台,是政企业务协同的平台之一,同时兼具协作.门户.办公应用集成.用户权限管理等多项功能.在此要求基础上,选择中间件基础技术平台,可以在最大程度满足平台功能需求的前 ...

  6. 《高性能SQL调优精要与案例解析》——10.4_SQL语句改写部分文档

    应各位读者要求,现将<高性能SQL调优精要与案例解析>中<10.4 SQL语句改写>部分整理成电子文档,上传至群共享文件(群号:298176197): 或者通过如下链接下载: ...

  7. 《高性能SQL调优精要与案例解析》一书谈主流关系库SQL调优(SQL TUNING或SQL优化)核心机制之——索引(index)

    继<高性能SQL调优精要与案例解析>一书谈SQL调优(SQL TUNING或SQL优化),我们今天就谈谈各主流关系库中,占据SQL调优技术和工作半壁江山的.最重要的核心机制之一——索引(i ...

  8. 《高性能SQL调优精要与案例解析》一书谈SQL调优(SQL TUNING或SQL优化)学习

    <高性能SQL调优精要与案例解析>一书上市发售以来,很多热心读者就该书内容及一些具体问题提出了疑问,因读者众多外加本人日常工作的繁忙 ,在这里就SQL调优学习进行讨论并对热点问题统一作答. ...

  9. 安全之路:Web渗透技术及实战案例解析(第2版)

    安全之路:Web渗透技术及实战案例解析(第2版)

随机推荐

  1. sqlserver还原数据库

    该方法只针对同等级数据库,不能跨级   比如sqlserver2012还原到sqlserver2008会报错 用数据库日志文件对数据库进行还原一 将日志文件.mdf文件和.ldf文件copy放置在sq ...

  2. 在客户端浏览器中点击下载生成excel

    生成excel的样式,里面的数据已经写好,使用apache,poi来写的. 1.首先是controller /** *下载服务结构体Excel * *@return */ @RequestMappin ...

  3. 从底层谈WebGIS 原理设计与实现(二):探究本质,WebGIS前端地图显示之地图比例尺换算原理

    从底层谈WebGIS 原理设计与实现(二):探究本质,WebGIS前端地图显示之地图比例尺换算原理 作者:naaoveGI…    文章来源:http://www.cnblogs.com/naaove ...

  4. python 升级到python2.7

    查看python的版本 [root@localhost ~] python  -V   Python 2.4.3 1.先安装GCC yum -y install gcc 如果安装gcc 出错, yum ...

  5. MySQL的事务处理及隔离级别

      事务是DBMS得执行单位.它由有限得数据库操作序列组成得.但不是任意得数据库操作序列都能成为事务.一般来说,事务是必须满足4个条件(ACID)       原子性(Autmic):事务在执行性,要 ...

  6. TEXT 8 Ready, fire, aim

    TEXT 8 Ready, fire, aim 预备!开火!瞄准!! Feb 16th 2006 From The Economist print edition Foreword:A vice-pr ...

  7. 组队打代码 !!! ——Alpha项目冲刺

    Alpha阶段 - 博客链接合集 队伍名称: 代码那些事儿 学号 姓名 211606320 刘佳 211606313 李佳 211606303 陈水莲 211606302 曾丽丽 211606338 ...

  8. VB.net 与 C# 的对应逻辑运算符

    And:对两个Boolean表达式执行逻辑和.AndAlso:与AndAlso类似,关键差异是AndAlso显示短路行为,如果AndAlso中的第一个表达式为False,则不计算第二个表达式.Or:对 ...

  9. nat 类型及打洞原理

    nat 类型分4种 1.全锥形 full cone A 与 主机B交互,nat转换 A的内部地址及端口为  ip1 port1,ip1和port1为对外地址,任何机器能访问. 2.ip 受限制(对B而 ...

  10. ThreadPoolExecutor常识

    线程池技术在并发时经常会使用到,java中的线程池的使用是通过调用ThreadPoolExecutor来实现的.ThreadPoolExecutor提供了四个构造函数,最后都会归结于下面这个构造方法: ...