LightOJ - 1170 - Counting Perfect BST(卡特兰数)
链接:
https://vjudge.net/problem/LightOJ-1170
题意:
BST is the acronym for Binary Search Tree. A BST is a tree data structure with the following properties.
i) Each BST contains a root node and the root may have zero, one or two children. Each of the children themselves forms the root of another BST. The two children are classically referred to as left child and right child.
ii) The left subtree, whose root is the left children of a root, contains all elements with key values less than or equal to that of the root.
iii) The right subtree, whose root is the right children of a root, contains all elements with key values greater than that of the root.
An integer m is said to be a perfect power if there exists integer x > 1 and y > 1 such that m = xy. First few perfect powers are {4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, ...}. Now given two integer a and b we want to construct BST using all perfect powers between a and b, where each perfect power will form the key value of a node.
Now, we can construct several BSTs out of the perfect powers. For example, given a = 1 and b = 10, perfect powers between a and b are 4, 8, 9. Using these we can form the following five BSTs.
4 4 8 9 9
\ \ / \ / /
8 9 4 9 4 8
\ / \ /
9 8 8 4
In this problem, given a and b, you will have to determine the total number of BSTs that can be formed using perfect powers between a and b.
思路:
考虑次方数较少,先打出来,每次查询个数。
卡特兰数打表。
代码:
// #include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<vector>
#include<string.h>
#include<set>
#include<queue>
#include<algorithm>
#include<math.h>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int MOD = 1e8+7;
const int MAXN = 1e6+10;
int Ans[MAXN];
LL Val[MAXN];
int cnt;
LL PowMod(LL a, LL b)
{
LL res = 1;
while(b)
{
if (b&1)
res = res*a%MOD;
a = a*a%MOD;
b >>= 1;
}
return res;
}
void Init()
{
cnt = 0;
for (LL i = 2;i <= 100000;i++)
{
LL tmp = 1LL*i*i;
while (tmp <= 1e10)
{
Val[++cnt] = tmp;
tmp *= i;
}
}
sort(Val+1, Val+1+cnt);
cnt = unique(Val+1, Val+1+cnt)-(Val+1);
Ans[0] = 0;
Ans[1] = 1;
for (int i = 2;i < MAXN;i++)
{
// F[n] = F[n-1] * (4 * n - 2) / (n + 1)
LL inv;
inv = PowMod(i+1, MOD-2);
Ans[i] = 1LL*Ans[i-1]*(4*i-2)%MOD*inv%MOD;
}
}
int main()
{
// freopen("test.in", "r", stdin);
Init();
int t, time = 0;
scanf("%d", &t);
while(t--)
{
printf("Case %d:", ++time);
LL l, r;
scanf("%lld %lld", &l, &r);
int rl = upper_bound(Val+1, Val+1+cnt, l-1)-Val;
int rr = upper_bound(Val+1, Val+1+cnt, r)-Val;
printf(" %d\n", Ans[rr-rl]);
}
return 0;
}
LightOJ - 1170 - Counting Perfect BST(卡特兰数)的更多相关文章
- light oj1170 - Counting Perfect BST卡特兰数
1170 - Counting Perfect BST BST is the acronym for Binary Search Tree. A BST is a tree data structur ...
- LightOj 1170 - Counting Perfect BST (折半枚举 + 卡特兰树)
题目链接: http://www.lightoj.com/volume_showproblem.php?problem=1170 题目描述: 给出一些满足完美性质的一列数(x > 1 and y ...
- 1170 - Counting Perfect BST
1170 - Counting Perfect BST PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 3 ...
- LightOJ1170 - Counting Perfect BST(卡特兰数)
题目大概就是求一个n个不同的数能构造出几种形态的二叉排序树. 和另一道经典题目n个结点二叉树不同形态的数量一个递推解法,其实这两个问题的解都是是卡特兰数. dp[n]表示用n个数的方案数 转移就枚举第 ...
- HDOJ/HDU 1133 Buy the Ticket(数论~卡特兰数~大数~)
Problem Description The "Harry Potter and the Goblet of Fire" will be on show in the next ...
- 【高精度练习+卡特兰数】【Uva1133】Buy the Ticket
Buy the Ticket Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...
- Buy the Ticket(卡特兰数+递推高精度)
Buy the Ticket Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tota ...
- Buy the Ticket HDU 1133 卡特兰数应用+Java大数
Problem Description The "Harry Potter and the Goblet of Fire" will be on show in the next ...
- [LeetCode系列]卡特兰数(Catalan Number) 在求解独特二叉搜寻树(Unique Binary Search Tree)中的应用分析
本文原题: LeetCode. 给定 n, 求解独特二叉搜寻树 (binary search trees) 的个数. 什么是二叉搜寻树? 二叉查找树(Binary Search Tree),或者是一棵 ...
随机推荐
- [转帖]Introduction to Linux monitoring and alerting
Introduction to Linux monitoring and alerting https://www.redhat.com/sysadmin/linux-monitoring-and-a ...
- Python开发之规范化目录
13.规范化目录 规范目录优点: 可读性高 加载快 查询修改简 规范化目录结构 (1) start.py文件:首要配置启动文件,运行run()就可以执行项目 #start import sys imp ...
- pandas中的axis参数(看其他人的博客中产生的疑问点,用自己的话解析出来)
axis有两个值:axis=0或者axis=1 看到很多资料都不太理解,把我个人理解说一下: 下面这张图,在很多资料中都看到了,我只能说先死记住 axis=0,代表跨行(注意看这张图的axis=0的箭 ...
- ARM中断深入分析几点
ARM中断深入分析几点 1.程序发生中断后,是如何跳转到中断程序里面的? 2.执行完中断后,如何返回到原来被打断的地方接着执行呢? 3.ARM处理器的流水线结构对中断返回地址的计算有什么影响? 4.A ...
- Appium_Xpath定位详解
做的笔记比较乱,定位过程中,发现很多开发小哥的代码命名问题,怕被怼,这里说说算了. 恩..这是我最常用,也是最熟悉的定位方法之一,这次趁着UI交换变更的机会,整理一下Xpath的定位方法,喜欢可以收藏 ...
- 全栈项目|小书架|微信小程序-首页水平轮播实现
首页效果 首页功能主要有 搜索(下篇文章介绍) 图书列表 图书列表 分析一波: 列表是水平滑动 点击列表会有按压效果:布局整体缩小 每个布局的信息从上到下排列分别是:图片.书名.作者.出版社 每个布局 ...
- ByteBuf源码
ByteBuf是顶层的抽象类,定义了用于传输数据的ByteBuf需要的方法和属性. AbstractByteBuf 直接继承ByteBuf,一些公共属性和方法的公共逻辑会在这里定义.例如虽然不同性质的 ...
- kubernetes第四章--架构
- js原型,原型链
先铺垫下原型规则: 1.所有的引用类型(数组,对象,函数)都具有对象特性,可自由扩展属性(出了null外) 2.所有的引用类型(数组,对象,函数)都有一个__proto__属性(隐式原型),属性值是一 ...
- HTML5 结构标签
一.定义标题栏:header header 元素是一种具有引导和导航作用的结构元素,通常用来放置整个页面或页面内的一个内容区块的标题,但也可以包含其他内容,因此整个页面的标题应该放在页面的开头. he ...