「AHOI / HNOI2017」礼物
「AHOI / HNOI2017」礼物
题目描述
我的室友最近喜欢上了一个可爱的小女生。马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她。每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度。
但是在她生日的前一天,我的室友突然发现他好像拿错了一个手环,而且已经没时间去更换它了!他只能使用一种特殊的方法,将其中一个手环中所有装饰物的亮度增加一个相同的自然数 c(即非负整数)。并且由于这个手环是一个圆,可以以任意的角度旋转它,但是由于上面装饰物的方向是固定的,所以手环不能翻转。需要在经过亮度改造和旋转之后,使得两个手环的差异值最小。
在将两个手环旋转且装饰物对齐了之后,从对齐的某个位置开始逆时针方向对装饰物编号1,2,…,n,其中 n 为每个手环的装饰物个数, 第 1 个手环的 i 号位置装饰物亮度为 xi,第 2 个手环的 i 号位置装饰物亮度为 yi,两个手环之间的差异值为(参见输入输出样例和样例解释):
$\sum_{i=1}^{n} (x_i-y_i)^2$
麻烦你帮他计算一下,进行调整(亮度改造和旋转),使得两个手环之间的差异值最小,这个最小值是多少呢?
输入输出格式
输入格式:
输入数据的第一行有两个数n, m,代表每条手环的装饰物的数量为n,每个装饰物的初始亮度小于等于m。
接下来两行,每行各有n个数,分别代表第一条手环和第二条手环上从某个位置开始逆时针方向上各装饰物的亮度。
输出格式:
输出一个数,表示两个手环能产生的最小差异值。注意在将手环改造之后,装饰物的亮度
可以大于 m。
输入输出样例
说明
【样例解释】
需要将第一个手环的亮度增加1,第一个手环的亮度变为: 2 3 4 5 6
旋转一下第二个手环。对于该样例,是将第二个手环的亮度6 3 3 4 5向左循环移动一个位置,使得第二手环的最终的亮度为: 3 3 4 5 6。
此时两个手环的亮度差异值为1
【数据范围】
30%的数据满足n≤500, m≤10;
70%的数据满足n≤5000;
100%的数据满足1≤n≤50000, 1≤m≤100, 1≤ai≤m。
Soda的题解
首先,有一个结论:两个手环增加非负整数亮度,等于其中一个增加一个整数亮度(可以为负)。也就是相对性。
我们令增加量为\(x\),旋转以后的原数列为\({a}{b}\)那么现在的费用就是:
\]
我们把第\(i\)项拿出来拆开,得到:
\]
那么原式变成了
\]
我们发现,这个式子除了最后一项之外都是确定的。那么我们只要令最后一项最大,那么就可以得到最小的费用值了
现在问题转化为求\(\sum_{i=1}^na_ib_i\)的最大值
等等,这个形式......
我们把数列{a}反过来,变成
\]
这是一个卷积吗
所以把反过来的数列\({a}\)倍长,和数列\({b}\)卷积,得到的项里面的第\(n+1\)到\(n*2\)项的最大值,就是\(\sum_{i=1}^na_ib_i\)的最大值
然后把前面的不变项加上,枚举变化量,就是答案了
时间复杂度\(O(n\log n+nm)\)
struct node {double x,y;};
il node operator+(co node&a,co node&b){
return (node){a.x+b.x,a.y+b.y};
}
il node operator-(co node&a,co node&b){
return (node){a.x-b.x,a.y-b.y};
}
il node operator*(co node&a,co node&b){
return (node){a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x};
}
il node operator/(co node&a,double k){
return (node){a.x/k,a.y/k};
}
co double PI=acos(-1);
co int N=262145; // 2^18+1
int rev[N];
void fourier_trans(node a[],int limit,int inverse){
for(int i=0;i<limit;++i)if(i<rev[i]) swap(a[i],a[rev[i]]);
for(int step=1;step<limit;step<<=1){
double alpha=inverse*PI/step;
for(int k=0;k<step;++k){
node omega=(node){cos(alpha*k),sin(alpha*k)};
for(int even=k;even<limit;even+=step<<1){
int odd=even+step;
node t=omega*a[odd];
a[odd]=a[even]-t,a[even]=a[even]+t;
}
}
}
if(inverse==-1)for(int i=0;i<limit;++i) a[i]=a[i]/limit;
}
int n,m;
node a[N],b[N];
LL s1,s2,ans=1e18;
int main(){
read(n),read(m);
for(int i=1;i<=n;++i){
read(a[i].x);
s1+=a[i].x*a[i].x,s2+=a[i].x;
}
for(int i=1;i<=n;++i){
read(b[i].x);
s1+=b[i].x*b[i].x,s2-=b[i].x;
}
copy(a+1,a+n+1,a+n+1);
reverse(b+1,b+n+1);
int len=ceil(log2(3*n+1)),limit=1<<len;
for(int i=0;i<limit;++i) rev[i]=rev[i>>1]>>1|(i&1)<<(len-1);
fourier_trans(a,limit,1),fourier_trans(b,limit,1);
for(int i=0;i<limit;++i) a[i]=a[i]*b[i];
fourier_trans(a,limit,-1);
for(int i=0;i<limit;++i) a[i].x=round(a[i].x);
for(int i=1;i<=n;++i)
for(int j=-m;j<=m;++j)
ans=min(ans,s1+j*j*n+2*j*s2-2*(LL)a[i+n].x);
printf("%lld\n",ans);
return 0;
}
体验了一下FFT用手写complex和数组的写法,久违了。
「AHOI / HNOI2017」礼物的更多相关文章
- loj#2020 「AHOI / HNOI2017」礼物 ntt
loj#2020 「AHOI / HNOI2017」礼物 链接 bzoj没\(letex\),差评 loj luogu 思路 最小化\(\sum\limits_1^n(a_i-b_i)^2\) 设改变 ...
- loj#2020. 「AHOI / HNOI2017」礼物
题意:给定xy数组求 \(\sum_{i=0}^{n-1}(x_i+y_{(i+k)\modn}+c)^2\) 题解:先化简可得 \(n*c^2+2*\sum_{i=0}^{n-1}x_i-y_i+\ ...
- 「AHOI / HNOI2017」单旋
「AHOI / HNOI2017」单旋 题目链接 H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构.伸展树(splay)是一种数据结构,因为代码好写,功能多,效率高,掌握这种 ...
- 「AHOI / HNOI2017」影魔
「AHOI / HNOI2017」影魔 题目描述 解决这类比较复杂的区间贡献问题关键在于找到计算的对象. 比如这道题,我们计算的对象就是区间中间的最大值. 对于点\(i\),我们找到左边第一个比他大的 ...
- loj #2023. 「AHOI / HNOI2017」抛硬币
#2023. 「AHOI / HNOI2017」抛硬币 题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个 ...
- loj #2021. 「AHOI / HNOI2017」大佬
#2021. 「AHOI / HNOI2017」大佬 题目描述 人们总是难免会碰到大佬.他们趾高气昂地谈论凡人不能理解的算法和数据结构,走到任何一个地方,大佬的气场就能让周围的人吓得瑟瑟发抖,不敢 ...
- [LOJ 2022]「AHOI / HNOI2017」队长快跑
[LOJ 2022]「AHOI / HNOI2017」队长快跑 链接 链接 题解 不难看出,除了影响到起点和终点的射线以外,射线的角度没有意义,因为如果一定要从该射线的射出一侧过去,必然会撞到射线 因 ...
- LOJ#2019. 「AHOI / HNOI2017」影魔
题意: 在一个序列中 如果有一个子区间 它有一个端点是区间最大值 另一个端点不是这个区间的次大值 就会有p2的贡献 它两个端点分别是最大值次大值 就会有p1的贡献 我们发现这两个条件有一个重合的部分 ...
- 「AH2017/HNOI2017」礼物
题目链接 戳我 \(Solution\) 应为我们可以将任意一个数列加上一个非负整数,即可以变为将一个数列加上一个整数(可以为负),我们将这个整数设为\(z\).所以要求的式子的变为: \[\sum_ ...
随机推荐
- 2017ACM/ICPC广西邀请赛 1004 Covering
Covering Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- 使用WinFrom + CefSharp 开发客户端程序
今天使用CefSharp,加上本地资源文件嵌入了HTML.CSS.JS文件,做为Winform的UI:效果不错,漂亮可控,简简单单,半天时间搞定从开发到上线: 下面记录下相关的备忘: (窗口的效果) ...
- Dev c++编译报错
https://blog.csdn.net/qq_37521610/article/details/87640513
- Mac打开原生NTFS功能
一.在 terminal 里输入 diskutil list 查看 U 盘的 NAME diskutil list 二.执行以下命令,输入密码 sudo nano /etc/fstab 三.把U盘信息 ...
- Vue框架初识01
摘要 vue简介 vue使用 一.Vue简介: 简介: Vue.js(读音 /vjuː/, 类似于 view)是一个构建数据驱动的 web 界面的渐进式框架.Vue.js 的目标是通过尽可能简单的 A ...
- Linux安装centos
在虚拟机上安装centos 虚拟机使用win10自带的hyper-v非常好用 centos下载地址http://mirrors.aliyun.com/centos/7.6.1810/isos/x86_ ...
- 树莓派raspberrypi系统安装docker以及编译nginx和php镜像
前言 在树莓派中搭建php环境,按正常流程一般是直接在系统中apt-get install相关的软件,不过如果某天我想无缝迁移到另一个地方,就又得在重新安装一次环境.所以为了方便,就直接在树莓派中使用 ...
- 【C#】上级实验四
1.虚方法练习 设计一个控制台应用程序,定义一个Shape类,具体要求如下: ()类中定义2个私有字段长度(length).宽度(breadth). ()类中定义相应公有属性分别对应上述2个字段: ( ...
- Linux中shell字符串分隔、字符串替换、字符串拼接
1.从properties文件中读取变量 SERVER_NAME=`sed '/project.config/!d;s/.*=//' conf/dubbo.properties | tr -d '\r ...
- java之hibernate之helloworld
这篇文章,会一步一步的演示hibernate的使用. 目录结构如下: 1.新建java项目 2.增加一个lib文件夹,并把 hibernate必须的jar包 和 数据库驱动包 一起复制进去 然后把hi ...