「AHOI / HNOI2017」礼物

题目描述

我的室友最近喜欢上了一个可爱的小女生。马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她。每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度。

但是在她生日的前一天,我的室友突然发现他好像拿错了一个手环,而且已经没时间去更换它了!他只能使用一种特殊的方法,将其中一个手环中所有装饰物的亮度增加一个相同的自然数 c(即非负整数)。并且由于这个手环是一个圆,可以以任意的角度旋转它,但是由于上面装饰物的方向是固定的,所以手环不能翻转。需要在经过亮度改造和旋转之后,使得两个手环的差异值最小。

在将两个手环旋转且装饰物对齐了之后,从对齐的某个位置开始逆时针方向对装饰物编号1,2,…,n,其中 n 为每个手环的装饰物个数, 第 1 个手环的 i 号位置装饰物亮度为 xi,第 2 个手环的 i 号位置装饰物亮度为 yi,两个手环之间的差异值为(参见输入输出样例和样例解释):

$\sum_{i=1}^{n} (x_i-y_i)^2$

麻烦你帮他计算一下,进行调整(亮度改造和旋转),使得两个手环之间的差异值最小,这个最小值是多少呢?

输入输出格式

输入格式:

输入数据的第一行有两个数n, m,代表每条手环的装饰物的数量为n,每个装饰物的初始亮度小于等于m。

接下来两行,每行各有n个数,分别代表第一条手环和第二条手环上从某个位置开始逆时针方向上各装饰物的亮度。

输出格式:

输出一个数,表示两个手环能产生的最小差异值。注意在将手环改造之后,装饰物的亮度

可以大于 m。

输入输出样例

输入样例#1:
复制

5 6
1 2 3 4 5
6 3 3 4 5
输出样例#1:
复制

1

说明

【样例解释】

需要将第一个手环的亮度增加1,第一个手环的亮度变为: 2 3 4 5 6

旋转一下第二个手环。对于该样例,是将第二个手环的亮度6 3 3 4 5向左循环移动一个位置,使得第二手环的最终的亮度为: 3 3 4 5 6。

此时两个手环的亮度差异值为1

【数据范围】

30%的数据满足n≤500, m≤10;

70%的数据满足n≤5000;

100%的数据满足1≤n≤50000, 1≤m≤100, 1≤ai≤m。

Soda的题解

首先,有一个结论:两个手环增加非负整数亮度,等于其中一个增加一个整数亮度(可以为负)。也就是相对性。

我们令增加量为\(x\),旋转以后的原数列为\({a}{b}\)那么现在的费用就是:

\[\sum_{i=1}^n\left(a_i+x-b_i\right)^2
\]

我们把第\(i\)项拿出来拆开,得到:

\[\left(a_i+x-b_i\right)^2=a_i^2+b_i^2+x^2+2a_ix-2a_ib_i-2b_ix
\]

那么原式变成了

\[\sum_{i=1}^na_i^2+\sum_{i=1}^nb_i^2+nx^2+2x\left(\sum_{i=1}^na_i-\sum_{i=1}^nb_i\right)-2\sum_{i=1}^na_ib_i
\]

我们发现,这个式子除了最后一项之外都是确定的。那么我们只要令最后一项最大,那么就可以得到最小的费用值了

现在问题转化为求\(\sum_{i=1}^na_ib_i\)的最大值

等等,这个形式......

我们把数列{a}反过来,变成

\[\sum_{i=1}^na_{n-i+1}b_i
\]

这是一个卷积吗

所以把反过来的数列\({a}\)倍长,和数列\({b}\)卷积,得到的项里面的第\(n+1\)到\(n*2\)项的最大值,就是\(\sum_{i=1}^na_ib_i\)的最大值

然后把前面的不变项加上,枚举变化量,就是答案了

时间复杂度\(O(n\log n+nm)\)

struct node {double x,y;};
il node operator+(co node&a,co node&b){
return (node){a.x+b.x,a.y+b.y};
}
il node operator-(co node&a,co node&b){
return (node){a.x-b.x,a.y-b.y};
}
il node operator*(co node&a,co node&b){
return (node){a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x};
}
il node operator/(co node&a,double k){
return (node){a.x/k,a.y/k};
}
co double PI=acos(-1);
co int N=262145; // 2^18+1
int rev[N];
void fourier_trans(node a[],int limit,int inverse){
for(int i=0;i<limit;++i)if(i<rev[i]) swap(a[i],a[rev[i]]);
for(int step=1;step<limit;step<<=1){
double alpha=inverse*PI/step;
for(int k=0;k<step;++k){
node omega=(node){cos(alpha*k),sin(alpha*k)};
for(int even=k;even<limit;even+=step<<1){
int odd=even+step;
node t=omega*a[odd];
a[odd]=a[even]-t,a[even]=a[even]+t;
}
}
}
if(inverse==-1)for(int i=0;i<limit;++i) a[i]=a[i]/limit;
}
int n,m;
node a[N],b[N];
LL s1,s2,ans=1e18;
int main(){
read(n),read(m);
for(int i=1;i<=n;++i){
read(a[i].x);
s1+=a[i].x*a[i].x,s2+=a[i].x;
}
for(int i=1;i<=n;++i){
read(b[i].x);
s1+=b[i].x*b[i].x,s2-=b[i].x;
}
copy(a+1,a+n+1,a+n+1);
reverse(b+1,b+n+1);
int len=ceil(log2(3*n+1)),limit=1<<len;
for(int i=0;i<limit;++i) rev[i]=rev[i>>1]>>1|(i&1)<<(len-1);
fourier_trans(a,limit,1),fourier_trans(b,limit,1);
for(int i=0;i<limit;++i) a[i]=a[i]*b[i];
fourier_trans(a,limit,-1);
for(int i=0;i<limit;++i) a[i].x=round(a[i].x);
for(int i=1;i<=n;++i)
for(int j=-m;j<=m;++j)
ans=min(ans,s1+j*j*n+2*j*s2-2*(LL)a[i+n].x);
printf("%lld\n",ans);
return 0;
}

体验了一下FFT用手写complex和数组的写法,久违了。

「AHOI / HNOI2017」礼物的更多相关文章

  1. loj#2020 「AHOI / HNOI2017」礼物 ntt

    loj#2020 「AHOI / HNOI2017」礼物 链接 bzoj没\(letex\),差评 loj luogu 思路 最小化\(\sum\limits_1^n(a_i-b_i)^2\) 设改变 ...

  2. loj#2020. 「AHOI / HNOI2017」礼物

    题意:给定xy数组求 \(\sum_{i=0}^{n-1}(x_i+y_{(i+k)\modn}+c)^2\) 题解:先化简可得 \(n*c^2+2*\sum_{i=0}^{n-1}x_i-y_i+\ ...

  3. 「AHOI / HNOI2017」单旋

    「AHOI / HNOI2017」单旋 题目链接 H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构.伸展树(splay)是一种数据结构,因为代码好写,功能多,效率高,掌握这种 ...

  4. 「AHOI / HNOI2017」影魔

    「AHOI / HNOI2017」影魔 题目描述 解决这类比较复杂的区间贡献问题关键在于找到计算的对象. 比如这道题,我们计算的对象就是区间中间的最大值. 对于点\(i\),我们找到左边第一个比他大的 ...

  5. loj #2023. 「AHOI / HNOI2017」抛硬币

    #2023. 「AHOI / HNOI2017」抛硬币   题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个 ...

  6. loj #2021. 「AHOI / HNOI2017」大佬

    #2021. 「AHOI / HNOI2017」大佬   题目描述 人们总是难免会碰到大佬.他们趾高气昂地谈论凡人不能理解的算法和数据结构,走到任何一个地方,大佬的气场就能让周围的人吓得瑟瑟发抖,不敢 ...

  7. [LOJ 2022]「AHOI / HNOI2017」队长快跑

    [LOJ 2022]「AHOI / HNOI2017」队长快跑 链接 链接 题解 不难看出,除了影响到起点和终点的射线以外,射线的角度没有意义,因为如果一定要从该射线的射出一侧过去,必然会撞到射线 因 ...

  8. LOJ#2019. 「AHOI / HNOI2017」影魔

    题意: 在一个序列中 如果有一个子区间 它有一个端点是区间最大值 另一个端点不是这个区间的次大值 就会有p2的贡献 它两个端点分别是最大值次大值 就会有p1的贡献 我们发现这两个条件有一个重合的部分 ...

  9. 「AH2017/HNOI2017」礼物

    题目链接 戳我 \(Solution\) 应为我们可以将任意一个数列加上一个非负整数,即可以变为将一个数列加上一个整数(可以为负),我们将这个整数设为\(z\).所以要求的式子的变为: \[\sum_ ...

随机推荐

  1. Android MVP框架实现登录案例

    一.Model package com.czhappy.mvpdemo.model; /** * author: chenzheng * created on: 2019/5/16 11:06 * d ...

  2. 倒数第K个结点

    typedef struct Lnode{ int data; struct Lnode *next; }Lnode,*Link; Link fi(Link head,int k){ Link fa ...

  3. [转帖]WannaCry惊天大发现!疑似朝鲜黑客组织Lazarus所为

    WannaCry惊天大发现!疑似朝鲜黑客组织Lazarus所为 Threatbook2017-05-16共588524人围观 ,发现 17 个不明物体系统安全 https://www.freebuf. ...

  4. Python-10-迭代器

    一.定义 1. 迭代的概念 迭代器即迭代的工具,那什么是迭代呢?迭代是一个重复的过程,每次重复即一次迭代,并且每次迭代的结果都是下一次迭代的初始值 while True: #只是单纯地重复,因而不是迭 ...

  5. 解决sublime text3运行PyQt5代码不能显示窗口的问题

    如题,在sublime中写了GUI代码,Ctrl+B能运行,但是就是不能显示窗口. 解决办法:  找到路径C:\Users\superlee\AppData\Roaming\Sublime Text ...

  6. MySQL练手小试题

    创建表和数据 创建class表 create table class ( cid int(11) primary key auto_increment, caption varchar(32) not ...

  7. JDBC使用8.0驱动包连接mysql设置时区serverTimezone

    驱动包用的是新版 mysql-connector-java-8.0.16.jar新版的驱动类改成了com.mysql.cj.jdbc.Driver新版驱动连接url也有所改动I.指定时区 如果不设置时 ...

  8. DDL和DML 的区别

    DDL (Data Definition Language 数据定义语言) create table 创建表 alter table 修改表 drop table 删除表 truncate table ...

  9. apache-httpd代理请求,selinux造成503问题的解决方法

    NameVirtualHost *:80 <VirtualHost *:80> ServerName test.baidu.com ProxyPreserveHost on ProxyPa ...

  10. 【转载】C#使用Math.Floor方法来向下取整

    在C#的数值运算中,有时候需要对计算结果舍去小数位保留整数位向下取整即可,此时就可使用内置方法Math.Floor来实现向下取整操作,Math.Floor方法将舍去小数部分,保留整数.Math.Flo ...