00-赵志勇机器学习-Logistics_Regression-data.txt(转载)
4.45925637575900 8.22541838354701 0
0.0432761720122110 6.30740040001402 0
6.99716180262699 9.31339338579386 0
4.75483224215432 9.26037784240288 0
8.66190392439652 9.76797698918454 0
7.17376551727269 8.69456339325210 0
0.134053879775005 1.96878052943837 0
2.95850718791494 5.80458392655308 0
0.162199197495798 2.59575596457315 0
3.99590517062991 8.83289511075255 0
6.13130341636350 9.18109248691241 0
4.13802790208159 9.60748524925563 0
8.90049077697510 9.99329318936273 0
4.15371012638716 9.53922527310308 0
3.47806488316686 7.80788315923614 0
5.04287107839320 9.38996803836429 0
2.56324459286653 7.83286351946551 0
5.42032358874179 8.77024851395462 0
2.78940677946772 5.84911155908821 0
1.69377595965126 3.42939148982086 0
2.57907558635543 5.85738793565177 0
4.82185528268354 9.96169885562949 0
0.253602746238408 7.45945161909674 0
8.14641315834860 9.88547372518201 0
1.07252390677591 9.64544522650273 0
3.96810711848012 9.37483872272884 0
7.78456478657554 9.21622730177576 0
5.68031802716968 9.55034658708916 0
0.188925610590359 1.86579459185882 0
3.39042984564948 5.22734216789434 0
0.306872061364665 8.10706884864857 0
2.94520568616781 8.89485671892082 0
1.56257145202601 7.59114877849288 0
7.88040432728020 9.72811231772191 0
2.06663143127242 5.55531983916915 0
3.26847684673349 5.80133323123041 0
3.03572486052262 4.55438209687869 0
4.06403686804154 7.30824174639464 0
0.261319587511897 6.82874924285753 0
0.535129082770840 2.96735234780109 0
6.16211768166533 8.73591445232541 0
0.0543225029100144 3.63143937000534 0
3.38950408283417 5.21140264842544 0
0.670802539239751 5.50842093397427 0
3.33354941448896 9.00586384747725 0
4.83782090456725 9.24046925519147 0
4.14342743933778 5.21158367718785 0
0.0448488462892471 2.53343482171120 0
3.29344955007619 8.39195386760030 0
1.43481273099994 4.54377111225283 0
5.80444602917862 7.72222238849776 0
2.89737803415351 4.84582798104369 0
3.48896826617082 9.42538199279707 0
7.98990181138566 9.38748992074748 0
6.07911967934092 7.81580715692381 0
8.54988937636567 9.83106545896296 0
1.86253147316586 3.64519173433558 0
5.09264649345917 7.16456405109382 0
0.640487340762152 2.96504627163533 0
0.445682665759531 7.27017831379406 0
7.03580231161425 9.62162716377990 0
2.38548233873891 9.31142472376713 0
5.47187479221741 6.52268275403238 0
3.09625873884070 7.24687725634908 0
5.64986319346389 8.14649426712568 0
7.29995079462111 8.54616550280286 0
8.77346437600257 9.96234073280813 0
3.06091044795100 7.72080944560689 0
2.73380551789568 4.29286766635781 0
4.69373224420759 9.24765856154850 0
6.87533960169376 9.88875131106959 0
3.00192545879843 6.33960532829528 0
1.35371591887987 4.90531471836317 0
4.98310945603791 8.19357999963722 0
1.44378940451651 3.32854209513079 0
3.58695390614628 9.08726843217394 0
1.66501084835760 6.33826894701403 0
1.13683031909428 8.93555055642300 0
6.89981119465722 9.08506017228389 0
3.50612434749800 7.19887972236541 0
7.98213686241980 9.90335214596799 0
4.48550059813567 7.87469534845766 0
8.18730647207947 9.65752968521276 0
6.98206593291099 9.31671668967771 0
4.22691515046792 6.27588464716913 0
5.42330764790338 7.08234539249773 0
1.77758743959901 9.00325034532830 0
1.13084327057428 7.21101548428525 0
3.93586389272097 8.03817933454068 0
6.63734173280782 8.35388742591753 0
0.386709419537340 8.58317856311490 0
3.32377361598771 8.07768523594907 0
8.06147926210387 9.31872691969549 0
8.98108629344805 9.99686700846425 0
7.12209318712481 9.35515066520718 0
4.89305717339869 7.48113528632786 0
7.40008878777077 9.35257115162952 0
7.03477188625162 9.97577769141571 0
7.09428420398105 9.71970901043399 0
4.37051546270230 9.41555568974276 0
4.00462374868525 0.616899669845488 1
5.44921361045783 0.138855328072746 1
8.44816973291296 1.96823424949569 1
7.09749399121559 4.84058301823207 1
7.13659478263630 3.99344574129641 1
3.13607555660068 1.01976990251471 1
9.42777338698193 2.03196575362135 1
2.88202491477532 0.512799144639290 1
7.98235678340026 2.31403273981939 1
6.42767231292936 0.998772381680681 1
1.78712965201534 0.243156456792515 1
3.07790563815491 1.88920490138202 1
9.43195911269671 0.268801081716839 1
6.34282338934720 0.234109280621259 1
4.82412559000009 1.99459231605986 1
8.56305479341248 4.72713371076877 1
3.29684212405129 2.07793293965495 1
7.90570542236263 3.88560220548909 1
9.07438180273557 2.97201368564586 1
4.03957906251732 1.88105978289717 1
1.78205895950614 0.293661208884570 1
2.68642960682293 1.36689620711673 1
7.50923375595256 4.39161107527268 1
9.22583275513275 6.75308704026472 1
5.93852172849132 0.0767525003841111 1
1.85217721700788 0.438665288257335 1
9.57234374408993 7.22701037061452 1
9.41511021370755 8.19137839466097 1
4.35273751059844 1.07589578304157 1
8.04923110762197 1.49599991038707 1
9.63236985254770 8.03011417611781 1
4.29156538673758 1.13530168347901 1
7.23413465556835 4.46740498567466 1
8.20309146793921 4.27626275005668 1
1.87457510864822 0.489332789968566 1
1.38780964339963 0.293816887566648 1
6.93682776203853 3.55888673905837 1
3.04295274833797 1.45808471523332 1
7.52052171782518 2.24448074758751 1
1.29475743274558 0.248662041648605 1
7.93270103161629 3.53322776478622 1
7.36266950886594 5.03397809680607 1
3.97602116402406 2.71911655949805 1
6.19034466536054 1.49434836516839 1
3.40178374234313 2.13801547822256 1
4.29491070615890 0.494287306651284 1
9.51694812792873 5.54313061426752 1
9.83993111985939 1.71347650375439 1
8.45868335411795 3.68311342408982 1
6.31700682494856 0.238683478937646 1
6.08012336783280 3.21848321902105 1
5.48289786541560 0.267286639106428 1
5.63646865791522 0.246636667516577 1
8.59268728497635 4.51516446747963 1
7.21916947499839 4.02521298309224 1
6.61095852079607 5.35205946687567 1
2.59249592920151 0.756284591960114 1
8.58163248547907 3.76779427699367 1
7.86164254606212 1.23425344739733 1
7.22459851512079 5.69192759004084 1
2.46391682231140 0.626697111247094 1
1.37666679614458 0.0850311192606557 1
6.99535329428774 5.22402041296117 1
4.10255509353404 0.0845494795236941 1
9.14754400713588 3.83800038341603 1
9.19417616894172 2.68752405465039 1
7.21993188858784 0.108525252131188 1
5.61112164928016 1.53003323224417 1
4.02501202704844 2.88388192100925 1
7.75454869096328 2.25550746659844 1
6.69549473855791 2.36673839888467 1
6.18849817990230 4.97836674652459 1
6.54263406218390 0.834598177291021 1
8.54443627754918 5.47850873429622 1
1.97961580331274 0.158062518938500 1
3.67309260569741 1.13227508530645 1
5.75572976460165 1.30828876313430 1
8.45160472860189 5.90751849062474 1
3.46373193769655 1.51690595784220 1
1.91395651414783 0.612317246772413 1
4.12656938065540 2.09322445393649 1
3.65772017039046 1.80838713249693 1
4.54395760030265 1.38858754767689 1
2.86266970800483 1.34954202841685 1
8.37374823952218 6.83156860507414 1
5.62707992632729 0.893689431466388 1
6.42610816769460 1.07534713660481 1
4.69353317658611 3.15086012845143 1
4.86173611501328 3.57464916591233 1
4.35769946480643 2.34450146003832 1
6.29762879066540 0.534351386077976 1
4.71155500188011 3.43210544532588 1
1.49995426186507 0.192006207383273 1
3.16576104712266 0.493379007110222 1
4.21408348419092 2.97014277918461 1
5.52248511695330 3.63263027130760 1
4.15244831176753 1.44597290703838 1
9.55986996363196 1.13832040773527 1
1.63276516895206 0.446783742774178 1
9.38532498107474 0.913169554364942 1
转自:
https://github.com/zhaozhiyong19890102/Python-Machine-Learning-Algorithm
00-赵志勇机器学习-Logistics_Regression-data.txt(转载)的更多相关文章
- 01-赵志勇机器学习-Logistics_Regression-train
Logistics Regression 二分类问题. 模型 线性模型 响应 sigmoid 损失函数(显示) 最小均方 优化方法 BGD 例子: #coding utf-8 import numpy ...
- 02-赵志勇机器学习-Logistics_Regression-test(转载)
# coding:UTF-8 ''' Date:20160901 @author: zhaozhiyong ''' import numpy as np from lr_train import si ...
- 12-赵志勇机器学习-Label_Propagation
(草稿) 过程: 1. 初始化所有节点的 labels 成唯一的值: 2. 对每个节点,将 label 更新为和其相连的所有节点中,标签最多的 节点的label: 2. 初始化情况下,假如所有相连的节 ...
- 11-赵志勇机器学习-DBSCAN聚类
(草稿) 两点关系的三种定义: 1. 直接密度可达:A在B的邻域内: 2. 密度可达:AB之间存在,直接密度可达的点串: 3. 密度连接:AB之间存在点k,使得Ak和Bk都密度可达: 过程: 1. 对 ...
- 09-赵志勇机器学习-k-means
(草稿) k-means: 1. 随机选取n个中心 2. 计算每个点到各个中心的距离 3. 距离小于阈值的归成一类. 4. 计算新类的质心,作为下一次循环的n个中心 5. 直到新类的质心和对应本次循环 ...
- 10-赵志勇机器学习-meanshift
(草稿) meanshift 也是一种聚类方法. 优点在于:不需要提前指定类型数. 缺点就是计算量大 过程:(最一般的做法,没有使用核函数) 1. 逐点迭代,设置为位置中心 2. 计算所有点到位置中心 ...
- 周志华-机器学习西瓜书-第三章习题3.5 LDA
本文为周志华机器学习西瓜书第三章课后习题3.5答案,编程实现线性判别分析LDA,数据集为书本第89页的数据 首先介绍LDA算法流程: LDA的一个手工计算数学实例: 课后习题的代码: # coding ...
- Warning: file_put_contents(data.txt): failed to open stream: Permission denied in /Library/WebServer/Documents/test.php on line 22
最近在学习PHP 在保存文件的时候报Warning: file_put_contents(data.txt): failed to open stream: Permission denied in ...
- sc.textFile("file:///home/spark/data.txt") Input path does not exist解决方法——submit 加参数 --master local 即可解决
use this val data = sc.textFile("/home/spark/data.txt") this should work and set master as ...
随机推荐
- 状压DP(超详细!!!)
一.定义 总述 状态压缩动态规划,就是我们俗称的状压DP,是利用计算机二进制的性质来描述状态的一种DP方式. 很多棋盘问题都运用到了状压,同时,状压也很经常和BFS及DP连用. 状压dp其实就是将状态 ...
- kinaba 安装踩坑: FATAL Error: [elasticsearch.url]: definition for this key is missing
操作系统:Linux kibana 版本: 7.4.0 1. 在/etc/yum.repos.d/ 下新建 kibana.repo 配置 yum 源地址 内容如下: [root@localhost ...
- Using MS Soap toolkit to generate web services .md
Different SOAP encoding styles - RPC, RPC-literal, and document-literal SOAP Remote Procedure Call(R ...
- unity工具开发
1.EditorWindow通过拖拽获取文件夹或者文件路径 #region 拖拽相关 Rect rect4 = EditorGUILayout.GetControlRect(); //将上面的框作为文 ...
- C#中$拼字符串
除了Format,StringBuilder,+方式拼字符串外,有一种比较直观的拼字符串方式,代码如下 static void Main(string[] args) { string name = ...
- Mybatis系列(一)— 处理冲突字符
在Mybatis的配置文件中编写SQL经常会遇到字符冲突问题 where或者having中使用"<"过滤,Mybatis xml解析器将其当做配置的开始标签处理: " ...
- 深入V8引擎-AST(5)
懒得发首页了,有时候因为贴的代码太多会被下,而且这东西本来也只是对自己学习的记录,阅读体验极差,所以就本地自娱自乐的写着吧! 由于是解析字符串,所以在开始之前介绍一下词法结构体中关于管理字符串类的属性 ...
- excel中统计COUNTIFS的值为0
excel中统计COUNTIFS的值为0 个人认为是由于导出的文件里面的字符个数问题 使用 =COUNTIFS(H1:H175,"微信支付") 这个的结果居然是0,找了很多办法 于 ...
- lombok的@Accessors注解3个属性说明
https://www.cnblogs.com/kelelipeng/p/11326936.html https://www.cnblogs.com/kelelipeng/p/11326621.htm ...
- C# word格式转换为pdf
引用 Microsoft.Office.Interop.Word 这个dll,可以在解决方案浏览器中搜索到并下载. 源码如下: public bool WordToPDF(string sourceP ...