Visionworks OpenVX
Visionworks OpenVX
OpenVX
heterogeneous computation framework
除了官方的參考實作外,下方是不同廠商的實作,有些有開放原始碼有些則是包裝程動態函式庫.
- Intel Computer Vision SDK
- AMD OVX : https://github.com/GPUOpen-ProfessionalCompute-Libraries/amdovx-core -->
- TI OVX:
- Nvidia Vision Works:
以上是有通過conformance test的廠商,另外ARM 也有類似的SDK(compute library)而且初期開發時在架構上也是參考OpenVX。
雖然一開始OpenVX是針對電腦視覺運算設計的軟體框架,但由於類神經網路的編程模式(programming model)跟熱門程度讓Khronos OpenVX工作小組也特別訂定了Neural Network Extension使得OpenVX也加入了深度學習的戰場。
VisionWorks
NVIDIA VisionWorks toolkit is a software development package for computer vision (CV) and image processing. VisionWorks™ implements and extends the Khronos OpenVX standard, and it is optimized for CUDA-capable GPUs and SOCs enabling developers to realize CV applications on a scalable and flexible platform.
VisionWorks includes the following primitives:
IMAGE ARITHMETIC
- Absolute Difference
- Accumulate Image
- Accumulate Squared
- Accumulate Weighted
- Add / Subtract / Multiply +
- Channel Combine
- Channel Extract
- Color Convert +
- CopyImage
- Convert Depth
- Magnitude
- MultiplyByScalar
- Not / Or / And / Xor
- Phase
- Table Lookup
- Threshold
FLOW & DEPTH
- Median Flow
- Optical Flow (LK) +
- Semi-Global Matching
- Stereo Block Matching
- IME Create Motion Field
- IME Refine Motion Field
- IME Partition Motion Field
GEOMETRIC TRANSFORMS
- Affine Warp +
- Warp Perspective +
- Flip Image
- Remap
- Scale Image +
FILTERS
- BoxFilter
- Convolution
- Dilation Filter
- Erosion Filter
- Gaussian Filter
- Gaussian Pyramid
- Laplacian3x3
- Median Filter
- Scharr3x3
- Sobel 3x3
FEATURES
- Canny Edge Detector
- FAST Corners +
- FAST Track +
- Harris Corners +
- Harris Track
- Hough Circles
- Hough Lines
ANALYSIS
- Histogram
- Histogram Equalization
- Integral Image
- Mean Std Deviation
- Min Max Locations
OpenVX for us
Requirements
- [x] Support user defined processing
- [ ] Support optimization of duplicate processing
- [ ] Open source framework (if available)
User defined processing
Yes. user node, base it on the Advanced Tiling Extensions (see the Intel's Extensions to the OpenVX* API: Advanced Tiling chapter)
Support optimization of duplicate processing
ref:
- Use virtual images whenever possible, as this unlocks many graph compiler optimizations.
- Whenever possible, prefer standard nodes and/or extensions over user kernel nodes (which serve as memory and execution barriers, hindering performance). This gives the Pipeline Manager much more flexibility to optimize the graph execution.
- If you still need to implement a user node, base it on the Advanced Tiling Extensions (see the Intel's Extensions to the OpenVX* API: Advanced Tiling chapter)
- If the application has independent graphs, run these graphs in parallel using
vxScheduleGraph
API call. - Provide enough parallel slack to the scheduler- do not break work (for example, images) into too many tiny pieces. Consider kernel fusion.
- For images, use smallest data type that fits the application accuracy needs (for example, 32->16->8 bits).
- Consider heterogeneous execution (see the Heterogeneous Computing with OpenVINO™ toolkit chapter).
- You can create an OpenVX image object that references a memory that was externally allocated (
vxCreateImageFromHandle
). To enable zero-copy with the GPU the externally allocated memory should be aligned. For more details, refer to https://software.intel.com/en-us/node/540453. - Beware of the (often prohibitive)
vxVerifyGraph
latency costs. For example, construct the graph in a way it would not require the verification upon the parameters updates. Notice that unlike Map/Unmap for the input images (see the Map/Unmap for OpenVX* Images section), setting new images with different meta-data (size, type, etc) almost certainly triggers the verification, potentially adding significant overhead.
Open source framework (if available)
OpenVino
Software Requirements
A Windows build environment needs these components:
- Intel® HD Graphics Driver (latest version)†
- OpenCV 3.4 or higher
- Intel® C++ Compiler 2017 Update 4
- CMake* 2.8 or higher
- Python* 3.5 or higher
- Visual Studio* 2015 or 2017
Get the Software
Your license includes the full version of the product. To access the toolkit:
- Make sure your system meets the minimum requirements listed on this page.
- Complete the registration form.
- Download the product.
AMD OpenVX
Features
- The code is highly optimized for both x86 CPU and OpenCL for GPU
- Supported hardware spans the range from low power embedded APUs (like the new G series) to laptop, desktop and workstation graphics
- Supports Windows, Linux, and OS X
- Includes a “graph optimizer” that looks at the entire processing pipeline and removes/replaces/merges functions to improve performance and minimize bandwidth at runtime
- Scripting support allows for rapid prototyping, without re-compiling at production performance levels
Pre-requisites
CPU: SSE4.1 or above CPU, 64-bit.
GPU: Radeon Professional Graphics Cards or Vega Family of Products (16GB required for vx_loomsl and vx_nn libraries)
OpenCV 3 (optional)
download
for RunVX
- Set OpenCV_DIR environment variable to OpenCV/build folder
Build Instructions
Build this project to generate AMD OpenVX library and RunVX executable.
- Refer to openvx/include/VX for Khronos OpenVX standard header files.
- Refer to openvx/include/vx_ext_amd.h for vendor extensions in AMD OpenVX library.
- Refer to runvx/README.md for RunVX details.
- Refer to runcl/README.md for RunCL details.
Build using Visual Studio Professional 2013 on 64-bit Windows 10/8.1/7
- Install OpenCV 3 with contrib download for RunVX tool to support camera capture and image display (optional)
- OpenCV_DIR environment variable should point to OpenCV/build folder
- Use amdovx-core/amdovx.sln to build for x64 platform
- If AMD GPU (or OpenCL) is not available, set build flag ENABLE_OPENCL=0 in openvx/openvx.vcxproj and runvx/runvx.vcxproj.
Test
Download to C:\Users\aeejshe\Downloads
- C:\Users\aeejshe\Downloads\amdovx-core-0.9-beta2
- C:\Users\aeejshe\Downloads\opencv
Build SW according to guidelines, especially
- set ENABLE_OPENCL=0
- modify lib to C:\Users\aeejshe\Downloads\opencv\build\x64\vc12\lib\opencv_world310d.lib
Demo
C:\Users\aeejshe\Downloads\amdovx-core-0.9-beta2\amdovx-core-0.9-beta2>runvx exa
mples\gdf\canny.gdf
***** VIDEOINPUT LIBRARY - 0.1995 - TFW07 *****
runvx.exe 0.9.7
OK: using AMD OpenVX 0.9.7
OK: enabled graph scheduling in separate threads
csv,HEADER ,STATUS, COUNT,cur-ms,avg-ms,min-ms,clenqueue-ms,clwait-ms,clwrite-ms
,clread-ms
OK: capturing 480x360 image(s) into 480x360 RGB image buffer
csv,OVERALL, PASS, 1, , 8.60, 8.60, 0.00, 0.00, 0.00, 0.00 (medi
an 8.598)
> total elapsed time: 0.11 sec
Abort: Press any key to exit...
canny.gdf
# create input and output images
data input = image:480,360,RGB2
data output = image:480,360,U008
# specify input source for input image and request for displaying input and output images
read input examples/images/face1.jpg
view input inputWindow
view output edgesWindow
# compute luma image channel from input RGB image
data yuv = image-virtual:0,0,IYUV
data luma = image-virtual:0,0,U008
node org.khronos.openvx.color_convert input yuv
node org.khronos.openvx.channel_extract yuv !CHANNEL_Y luma
# compute edges in luma image using Canny edge detector
data hyst = threshold:RANGE,UINT8:INIT,80,100
data gradient_size = scalar:INT32,3
node org.khronos.openvx.canny_edge_detector luma hyst gradient_size !NORM_L1 output
input --> |color_convert| yuv
yuv --> |channel_extract| luma
luma --> |merge| merged
hyst --> merged
gradient_size --> merged
merged --> |canny_edge_detector| output
runvx
usage
C:\Users\aeejshe\Downloads\amdovx-core-0.9-beta2\amdovx-core-0.9-beta2>runvx
***** VIDEOINPUT LIBRARY - 0.1995 - TFW07 *****
runvx.exe 0.9.7
Usage:
runvx.exe [options] [file] <file.gdf> [argument(s)]
runvx.exe [options] node <kernelName> [argument(s)]
runvx.exe [options] shell [argument(s)]
The argument(s) are data objects created using <data-description> syntax.
These arguments can be accessed from inside GDF as $1, $2, etc.
The available command-line options are:
-h
Show full help.
-v
Turn on verbose logs.
-root:<directory>
Replace ~ in filenames with <directory> in the command-line and
GDF file. The default value of '~' is current working directory.
-frames:[<start>:]<end>|eof|live
Run the graph/node for specified frames or until eof or just as live.
Use live to indicate that input is live until aborted by user.
-affinity:CPU|GPU[<device-index>]
Set context affinity to CPU or GPU.
-dump-profile
Print performance profiling information after graph launch.
-enable-profile
use directive VX_DIRECTIVE_AMD_ENABLE_PROFILE_CAPTURE when graph is create
d
-discard-compare-errors
Continue graph processing even if compare mismatches occur.
-disable-virtual
Replace all virtual data types in GDF with non-virtual data types.
Use of this flag (i.e. for debugging) can make a graph run slower.
dump profile
C:\Users\aeejshe\Downloads\amdovx-core-0.9-beta2\amdovx-core-0.9-beta2>runvx -du
mp-profile examples\gdf\canny.gdf
***** VIDEOINPUT LIBRARY - 0.1995 - TFW07 *****
runvx.exe 0.9.7
OK: using AMD OpenVX 0.9.7
OK: enabled graph scheduling in separate threads
csv,HEADER ,STATUS, COUNT,cur-ms,avg-ms,min-ms,clenqueue-ms,clwait-ms,clwrite-ms
,clread-ms
OK: capturing 480x360 image(s) into 480x360 RGB image buffer
csv,OVERALL, PASS, 1, , 8.62, 8.62, 0.00, 0.00, 0.00, 0.00 (medi
an 8.621)
> total elapsed time: 0.07 sec
> graph profile:
COUNT,tmp(ms),avg(ms),min(ms),max(ms),DEV,KERNEL
1, 8.621, 8.621, 8.621, 8.621,CPU,GRAPH
1, 1.196, 1.196, 1.196, 1.196,CPU,com.amd.openvx.ColorConvert_Y_RGB
1, 4.905, 4.905, 4.905, 4.905,CPU,com.amd.openvx.CannySobel_U16_U8_3x3_
L1NORM
1, 2.305, 2.305, 2.305, 2.305,CPU,com.amd.openvx.CannySuppThreshold_U8X
Y_U16_3x3
1, 0.208, 0.208, 0.208, 0.208,CPU,com.amd.openvx.CannyEdgeTrace_U8_U8XY
Abort: Press any key to exit...
Test if CSE works
input
# create input and output images
data input = image:480,360,RGB2
data output = image:480,360,U008
data output2 = image:480,360,U008
# specify input source for input image and request for displaying input and output images
read input examples/images/face1.jpg
view input inputWindow
view output edgesWindow
# compute luma image channel from input RGB image
data yuv = image-virtual:0,0,IYUV
data yuv2 = image-virtual:0,0,IYUV
data luma = image-virtual:0,0,U008
data luma2 = image-virtual:0,0,U008
node org.khronos.openvx.color_convert input yuv
node org.khronos.openvx.color_convert input yuv2
node org.khronos.openvx.channel_extract yuv !CHANNEL_Y luma
node org.khronos.openvx.channel_extract yuv2 !CHANNEL_Y luma2
# compute edges in luma image using Canny edge detector
data hyst = threshold:RANGE,UINT8:INIT,80,100
data gradient_size = scalar:INT32,3
node org.khronos.openvx.canny_edge_detector luma hyst gradient_size !NORM_L1 output
node org.khronos.openvx.canny_edge_detector luma2 hyst gradient_size !NORM_L1 output2
Output
C:\Users\aeejshe\Downloads\amdovx-core-0.9-beta2\amdovx-core-0.9-beta2>runvx -du
mp-profile examples\gdf\canny.gdf
***** VIDEOINPUT LIBRARY - 0.1995 - TFW07 *****
runvx.exe 0.9.7
OK: using AMD OpenVX 0.9.7
OK: enabled graph scheduling in separate threads
csv,HEADER ,STATUS, COUNT,cur-ms,avg-ms,min-ms,clenqueue-ms,clwait-ms,clwrite-ms
,clread-ms
OK: capturing 480x360 image(s) into 480x360 RGB image buffer
csv,OVERALL, PASS, 1, , 17.13, 17.13, 0.00, 0.00, 0.00, 0.00 (medi
an 17.127)
> total elapsed time: 0.07 sec
> graph profile:
COUNT,tmp(ms),avg(ms),min(ms),max(ms),DEV,KERNEL
1, 17.127, 17.127, 17.127, 17.127,CPU,GRAPH
1, 1.202, 1.202, 1.202, 1.202,CPU,com.amd.openvx.ColorConvert_Y_RGB
1, 1.192, 1.192, 1.192, 1.192,CPU,com.amd.openvx.ColorConvert_Y_RGB
1, 4.857, 4.857, 4.857, 4.857,CPU,com.amd.openvx.CannySobel_U16_U8_3x3_
L1NORM
1, 4.838, 4.838, 4.838, 4.838,CPU,com.amd.openvx.CannySobel_U16_U8_3x3_
L1NORM
1, 2.312, 2.312, 2.312, 2.312,CPU,com.amd.openvx.CannySuppThreshold_U8X
Y_U16_3x3
1, 2.302, 2.302, 2.302, 2.302,CPU,com.amd.openvx.CannySuppThreshold_U8X
Y_U16_3x3
1, 0.209, 0.209, 0.209, 0.209,CPU,com.amd.openvx.CannyEdgeTrace_U8_U8XY
1, 0.207, 0.207, 0.207, 0.207,CPU,com.amd.openvx.CannyEdgeTrace_U8_U8XY
Abort: Press any key to exit...
Q: Why CSE not work?
TODO:
API
//vx_api.h
VX_API_ENTRY vx_graph VX_API_CALL vxCreateGraph(vx_context context);
VX_API_ENTRY vx_status VX_API_CALL vxVerifyGraph(vx_graph graph);
VX_API_ENTRY vx_status VX_API_CALL vxProcessGraph(vx_graph graph);
VX_API_ENTRY vx_image VX_API_CALL vxCreateVirtualImage(vx_graph graph, vx_uint32 width, vx_uint32 height, vx_df_image color);
//vx_node.h
VX_API_ENTRY vx_node VX_API_CALL vxColorConvertNode(vx_graph graph, vx_image input, vx_image output);
OpenCV G-API
Intro
[G-API Intro](file:///C:/Users/aeejshe/Downloads/2018-12-24-GAPI_Overview.pdf)
Features
API
//core.hpp
GAPI_EXPORTS GMat resize(const GMat& src, const Size& dsize, double fx = 0, double fy = 0, int interpolation = INTER_LINEAR);
//GComputation.hpp
class GComputation{
...
GComputation(GProtoInputArgs &&ins,
GProtoOutputArgs &&outs); // Arg-to-arg overload
void apply(GRunArgs &&ins, GRunArgsP &&outs, GCompileArgs &&args = {});
...
}
implementation
of G-API apply function
GComputation -> GComputation2: apply
GComputation2 -> GCompiler: compile
GCompiler -> Graph: build graph
Graph --> GComputation2: return ade::Graph
GComputation2 -> Graph: exec the graph
ref:
Vision grab post processing
Study if OpenVINO or OpenCV supports
- CSE(common-subexpression elimination)
- feed partially inputs
Lib | CSE | partially inputs |
---|---|---|
OpenVINO | x | x |
AMDOVX | x | x |
OpenCV G-API | x | x |
Intel TBB | x | v behavior: the ready nodes are called then exit Code: C:\jshe\codes\lua\src\tbbtest\test_tbb_behavior.cpp |
Tensorflow | v |
TODO
Test if can be called multiples like following
while true
modify input
vxProcessGraph()
ref: http://projects.eees.dei.unibo.it/adrenaline/tutorial-02-execute-openvx-examples/
OpenVX讀書筆記
summary
high level | low level | |
---|---|---|
ovx | strong typed eg VX_API_ENTRY vx_node VX_API_CALL vxColorConvertNode(vx_graph graph, vx_image input, vx_image output); |
weak typed, eg OpenVX.dll!agoCreateNode(_vx_graph * graph, int kernel_id) |
tbb | strong typed make_edge(tbb::flow::output_port<1>(gpu_slm_split_n), tbb::flow::input_port<1>(gpu_slm_mat_mult_n)) tbb::flow::function_node< validation_args_type > mat_validation_n(g, tbb::flow::unlimited, [](const validation_args_type& result) { // Get references to matrixes const tbb::flow::gfx_buffer& GPU_SLM_MAT = std::get<0>(result); const tbb::flow::gfx_buffer& CPU_SLM_MAT = std::get<1>(result); const tbb::flow::gfx_buffer& CPU_NAIVE_MAT = std::get<2>(result); // Verify results |
Not sure |
G-API | strong typed | TODO |
// ovx: \vis_bep_12\C\Users\aeejshe\Downloads\amdovx-core-0.9-beta2\amdovx-core-0.9-beta2
// tbb: C:\Users\aeejshe\Downloads\tbb2017_20170604oss_win\tbb2017_20170604oss
How to register Kernel
Define a enum
VX_KERNEL_COLOR_CONVERT = VX_KERNEL_BASE(VX_ID_KHRONOS, VX_LIBRARY_KHR_BASE) + 0x1,
Registrtion
OVX_KERNEL_ENTRY( VX_KERNEL_COLOR_CONVERT , ColorConvert, "color_convert", AIN_AOUT, ATYPE_II , false ),
the parameters meaning
#define OVX_KERNEL_ENTRY(kernel_id,name,kname,argCfg,argType,validRectReset) \
#define ATYPE_II { VX_TYPE_IMAGE, VX_TYPE_IMAGE }
- AIN_AOUT: 1 in, 1 out
- ATYPE_II: 2 image types
Implement "DramaDivideNode" operation, it is used to select the best suited for this PC architecture
int agoDramaDivideNode(AgoNodeList * nodeList, AgoNode * anode)
{
// save parameter list
vx_uint32 paramCount = anode->paramCount;
AgoData * paramList[AGO_MAX_PARAMS]; memcpy(paramList, anode->paramList, sizeof(paramList));
// divide the node depending on the type
int status = -1;
switch (anode->akernel->id)
{
case VX_KERNEL_COLOR_CONVERT:
status = agoDramaDivideColorConvertNode(nodeList, anode);
break;
the function is called by optimize function
> OpenVX.dll!agoCreateNode(_vx_graph * graph, int kernel_id) Line 2699 C++
OpenVX.dll!agoDramaDivideAppend(AgoNodeList * nodeList, _vx_node * anode, int new_kernel_id, _vx_reference * * paramList, unsigned int paramCount) Line 37 C++
OpenVX.dll!agoDramaDivideAppend(AgoNodeList * nodeList, _vx_node * anode, int new_kernel_id) Line 56 C++
OpenVX.dll!agoDramaDivideColorConvertNode(AgoNodeList * nodeList, _vx_node * anode) Line 244 C++
OpenVX.dll!agoDramaDivideNode(AgoNodeList * nodeList, _vx_node * anode) Line 1818 C++
OpenVX.dll!agoOptimizeDramaDivide(_vx_graph * agraph) Line 1962 C++
OpenVX.dll!agoOptimizeDrama(_vx_graph * agraph) Line 522 C++
OpenVX.dll!agoOptimizeGraph(_vx_graph * agraph) Line 209 C++
OpenVX.dll!vxVerifyGraph(_vx_graph * graph) Line 2450 C++
runvx.exe!CVxEngine::ProcessGraph(std::vector<char const *,std::allocator<char const *> > * graphNameList, unsigned __int64 beginIndex) Line 285 C++
How to schedule graph?
What optimization is done in optimize()?
Choose the best
Visionworks OpenVX的更多相关文章
- OpenVX
OpenVX openvx 1. 编译 尝试编译openvx_sample,下载相关代码. 下载的sample code直接使用make可以生成libopenvx.so. 使用python Buil ...
- 【ARM-Linux开发】【CUDA开发】【深度学习与神经网络】Jetson Tx2安装相关之三
JetPack(Jetson SDK)是一个按需的一体化软件包,捆绑了NVIDIA®Jetson嵌入式平台的开发人员软件.JetPack 3.0包括对Jetson TX2 , Jetson TX1和J ...
- Jetson TX2
NVIDIA Jetson TX2作为一个嵌入式平台的深度学习端,具备不错的GPU性能,可以发现TX2的GPU的计算能力是6.2.这意味着TX2对半精度运算有着良好的支持,因此,完全可以在桌面端训练好 ...
- Jetson TX2介绍
Jetson TX2是NIVDIA瞄准人工智能在Jetson TK1和TX1推出后的升级 TX2的GPU和CPU都进行了升级,内存增加到了8GB.存储增加到了32GB,支持Wifi和蓝牙,编解码支持H ...
- 基于GPU的图像处理平台
基于GPU的图像处理平台 1. (309)英伟达推Jetson TX1 GPU模块力推人工智能 1.1 产品概述 Jetson TX1 GPU模块,主要针对近年来蓬勃发展的人工智能市场,包括无人机. ...
- NVIDIA Jetson™ TX1 Module
NVIDIA® Jetson TX1 是一台模块式计算机,代表了视觉计算领域近20年的研发成就,其尺寸仅有信用卡大小.Jetson TX1 基于NVIDIA Maxwell™ 架构,配有256个 NV ...
- NVIDIA Jetson™ TX1
NVIDIA® Jetson TX1 是一台模块式计算机,代表了视觉计算领域近20年的研发成就,其尺寸仅有信用卡大小.Jetson TX1 基于崭新 NVIDIA Maxwell™ 架构,配有256个 ...
- Ubuntu1404 (1)
0.初始设置 (1)开户root账号并重启系统: sudo gedit /usr/share/lightdm/lightdm.conf.d/50-ubuntu.conf, 添加greeter-show ...
- 人工智能AI芯片与Maker创意接轨(下)
继「人工智能AI芯片与Maker创意接轨」的(上)篇中,认识了人工智能.深度学习,以及深度学习技术的应用,以及(中)篇对市面上AI芯片的类型及解决方案现况做了完整剖析后,系列文到了最后一篇,将带领各位 ...
随机推荐
- MySQL 如何优化大分页查询?
一 背景 大部分开发和DBA同行都对分页查询非常非常了解,看帖子翻页需要分页查询,搜索商品也需要分页查询.那么问题来了,遇到上千万或者上亿的数据量怎么快速的拉取全量,比如大商家拉取每月千万级别的订单数 ...
- Oracle数据库中 =:和 :=
=:应该相当于 a = :b 表明b是个绑定变量,需要执行时进行变量绑定. 变量绑定:变量绑定是指在sql语句的条件中使用变量而不是常量.比如shared pool里有两条sql语句,select * ...
- vue.js生成纵向拓扑图
1.前端代码 <link href="https://magicbox.bk.tencent.com/static_api/v3/assets/bootstrap-3.3.4/css/ ...
- 点击一个超链接,弹出固定大小的新窗口(js实现)
1.最基本的弹出窗口代码 <SCRIPT LANGUAGE="javascript"> <!-- window.open ('page.html') --> ...
- 警告:Establishing SSL connection without server’s identity verification is not recommended
SpringBoot启东时红色警告: Mon Jun 04 00:53:48 CST 2018 WARN: Establishing SSL connection without server's i ...
- Windows server服务器入侵检查
基本检查点 检测不正常账户 查找被新增的账号,特别是管理员群组的(Administrators group)里的新增账户. C:\lusrmgr.msc C:\>net localgroup ...
- Dockerfile 常见指令的意义/常见的使用方式/使用示例/
一.什么是 Dockerfile ? Dockerfile 就是生成docker镜像的指令集, 通过使用docker工具执行这些指令集可以方便快捷地生成镜像, 并且能不断复用 Dockerfile 指 ...
- Properties 取值和设置函数 Hashtable的静态内部类Entry的结构和克隆方法
- c#接口interface学习
好久没学习C#了,上次已经学习到了接口这块,感觉有点不太好理解,因此重新学习,在vs上面运行了,本来不想写博客的,但是正好看到网上有人说,写博客可以加深印象,因此,写吧. 下面是菜鸟教程的实例 usi ...
- 用插件maven-surefire-report-plugin生成html格式测试报告
在默认情况下,执行maven test/maven package/maven install命令时会在target/surefire-reports目录下生成txt和xml格式的输出信息. 其实ma ...