目的

  让Faster R-CNN能做实例分割的任务。

方法

  模型的结构图如下。

  

  与Faster R-CNN相比,主要有两点变化。

  (1) 用RoI Align替代RoI Pool。

  首先回顾一下RoI Pool,流程为:将RPN产生的原图侯选框映射到CNNs输出的feature map上,显然原图比feature map大,所以映射后的像素坐标可能会有小数,这里的做法是用近邻插值法,通俗讲,坐标四舍五入。

  而这种做法肯定会带来一些空间位置上的小误差,而我们后面的实例分割是逐像素的,接受不了这种误差,因此采用RoI Align,用双线性插值法替代近邻插值法(具体可以参考博客:https://zhuanlan.zhihu.com/p/49832888)

  (2)添加了一个基于FCN的Mask分支,用来对feature map上的RoI进行实例分割。

  经过RoI Align得到的feature map,经过几层卷积,最终得到一个m*m的二值特征图,object与background,逐像素分类即可。这里之所以采用FCN,是因为我们最终所做的实例分割,需要保留空间信息;如果最后一层接FC的话得到的就是一维向量。

总结

  Mask R-CNN的实例分割效果很好,尤其对于那种目标偏小的图片效果也很好,主要是因为他是先通过前面的RoI Align把目标给框出来了,后面实例分割的话是在包含目标的小框中进行的。

  

  

目标检测论文解读11——Mask R-CNN的更多相关文章

  1. AAAI2019 | 基于区域分解集成的目标检测 论文解读

    Object Detection based on Region Decomposition and Assembly AAAI2019 | 基于区域分解集成的目标检测 论文解读 作者 | 文永亮 学 ...

  2. 目标检测论文解读3——Fast R-CNN

    背景 deep ConvNet兴起,VGG16应用在图像分类任务上表现良好,本文用VGG16来解决检测任务.SPP NET存在CNN层不能fine tuning的缺点,且之前的方法训练都是分为多个阶段 ...

  3. 目标检测论文解读5——YOLO v1

    背景 之前热门的目标检测方法都是two stage的,即分为region proposal和classification两个阶段,本文是对one stage方法的初次探索. 方法 首先看一下模型的网络 ...

  4. 目标检测论文解读1——Rich feature hierarchies for accurate object detection and semantic segmentation

    背景 在2012 Imagenet LSVRC比赛中,Alexnet以15.3%的top-5 错误率轻松拔得头筹(第二名top-5错误率为26.2%).由此,ConvNet的潜力受到广泛认可,一炮而红 ...

  5. 目标检测论文解读10——DSSD

    背景 SSD算法在检测小目标时精度并不高,本文是在在SSD的基础上做出一些改进,引入卷积层,能综合上下文信息,提高模型性能. 理解 Q1:DSSD和SSD的区别有哪些? (1)SSD是一层一层下采样, ...

  6. 目标检测论文解读13——FPN

    引言 对于小目标通常需要用到多尺度检测,作者提出的FPN是一种快速且效果好的多尺度检测方法. 方法 a,b,c是之前的方法,其中a,c用到了多尺度检测的思想,但他们都存在明显的缺点. a方法:把每图片 ...

  7. 目标检测论文解读12——RetinaNet

    引言 这篇论文深刻分析了one-stage的模型精度比two-stage更差的原因,并提出Focal Loss提高精度. 思路 在论文中,作者指出,造成one-stage模型精度差的原因主要是:正负样 ...

  8. 目标检测论文解读9——R-FCN

    背景 基于ResNet 101的Faster RCNN速度很慢,本文通过提出Position-sensitive score maps(位置敏感分值图)来给模型加速. 方法 首先分析一下,为什么基于R ...

  9. 目标检测论文解读6——SSD

    背景 R-CNN系列算法检测速度不够快,YOLO v1检测准确率较低,而且无法检测到密集目标. 方法 SSD算法跟YOLO类似,都属于one stage的算法,即通过回归算法直接从原图得到预测结果,为 ...

随机推荐

  1. 两台三层交换机单区域OSPF动态路由实验

    一.   实验目的 1.  掌握三层交换机之间通过OSPF协议实现网段互通的配置方法. 2.  理解RIP协议和OSPF协议内部实现的不同点 二.   应用环境 当两台三层交换机级联时,为了保证每台交 ...

  2. 前端css命名规范----BEM

    一.什么是BEM BEM就是块(block).元素(element).修饰符(modifier),是由Yandex团队提出的一种前端命名方法论.这种巧妙的命名方法可以使css类对其他开发者来说更加透明 ...

  3. [LeetCode] 248. Strobogrammatic Number III 对称数之三

    A strobogrammatic number is a number that looks the same when rotated 180 degrees (looked at upside ...

  4. 【Arch安装】

    [Arch安装]不完整,凭记忆补充 1,制作安装介质(请跳转链接:https://www.archlinux.org/download/) 2,从UEFI模式启动后,按照官方WIKI向导操作(http ...

  5. Spring security 知识笔记【自定义登录页面】

    一.引入依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId> ...

  6. CAP带你轻松玩转ASP.NETCore消息队列

    CAP是什么? CAP是由我们园子里的杨晓东大神开发出来的一套分布式事务的决绝方案,是.Net Core Community中的第一个千星项目(目前已经1656 Start),具有轻量级.易使用.高性 ...

  7. 联合CRF和字典学习的自顶向下的视觉显著性-全文解读

    top-down visual saliency via joint CRF anddictionary learning 自顶向下的视觉显著性是使用目标对象的可判别表示和一个降低搜索空间的概率图来进 ...

  8. 用Java编程能给物联网(IoT)带来什么优势与不同?

    用Java编程能给物联网(IoT)带来什么优势与不同? 这是一个不太容易回答的问题,也是一个适合拿出来与大家讨论的一个话题~首先需要聊聊物联网硬件与嵌入式设备有什么不同.嵌入式设备通常是一个软件一体的 ...

  9. UVA 10852 Less Prime 题解

    Less Prime Let n be an integer, 100 n 10000, nd the prime number x, x n, so that n

  10. Deep Learning专栏--强化学习之MDP、Bellman方程(1)

    本文主要介绍强化学习的一些基本概念:包括MDP.Bellman方程等, 并且讲述了如何从 MDP 过渡到 Reinforcement Learning. 1. 强化学习基本概念 这里还是放上David ...