HDU4747:Mex(线段树区间修改)
题意:
给出\(n\)个数,然后求\(\sum_{i=1}^n\sum_{j=i}^nmex(i,j)\)。\(mex(i,j)\)表示区间\([i,j]\)的\(mex\)。
思路:
- 考虑枚举左右端点的其中一个,然后快速统计答案。
- 观察发现对于一个\(a_i\),如果区间左端点从包含它到了不包含的状态,那么其会影响\([i+1,next[a_i]-1]\)这个区间中的\(mex\)值。
- 那么尝试枚举左端点,根据左端点数值快速统计答案。(一开始想的右端点半天出不来啊= ,=)
- 怎么统计呢?
- 观察到左端点固定的话,区间\(mex\)是单调不减的,那么我们就利用这一性质!
- 找到右端点位于\([i+1,next[a_i]-1]\)时,区间\(mex\)大于\(a_i\)的集合,然后区间修改即可。
总的来说,主要还是要分析到一个点对区间\(mex\)的影响,以及区间\(mex\)的单调性。
#include <bits/stdc++.h>
//#define heyuhhh ok
using namespace std;
typedef long long ll;
const int N = 200005;
int a[N], b[N];
int n;
bool vis[N];
ll sumv[N << 2], lz[N << 2], maxv[N << 2];
int nxt[N];
void Getmex() {
map <int, int> mp;
int j = 0;
for(int i = 0; i <= n + 1; i++) vis[i] = 0;
for(int i = 1; i <= n; i++) {
if(a[i] <= n) vis[a[i]] = 1;
while(vis[j]) ++j;
b[i] = j;
}
for(int i = n; i >= 1; i--) {
if(mp.find(a[i]) == mp.end()) nxt[i] = n + 1;
else nxt[i] = mp[a[i]];
mp[a[i]] = i;
}
}
void push_up(int o) {
sumv[o] = sumv[o << 1] + sumv[o << 1|1];
maxv[o] = max(maxv[o << 1], maxv[o << 1|1]);
}
void push_down(int o, int l, int r) {
if(lz[o] != -1) {
int mid = (l + r) >> 1;
lz[o << 1] = lz[o << 1|1] = lz[o];
sumv[o << 1] = 1ll * (mid - l + 1) * lz[o];
sumv[o << 1|1] = 1ll * (r - mid) * lz[o];
maxv[o << 1] = maxv[o << 1|1] = lz[o];
lz[o] = -1;
}
}
void build(int o, int l, int r) {
lz[o] = -1;
if(l == r) {
sumv[o] = maxv[o] = b[l];
return;
}
int mid = (l + r) >> 1;
build(o << 1, l, mid); build(o << 1|1, mid + 1, r);
push_up(o);
}
int query_l(int o, int l, int r, int L, int R, int v) {
if(l == r) return l;
int mid = (l + r) >> 1;
push_down(o, l, r);
int ok = -1;
if(maxv[o << 1] >= v && L <= mid) ok = query_l(o << 1, l, mid, L, R, v);
if(ok == -1 && maxv[o << 1|1] >= v && R > mid) ok = query_l(o << 1|1, mid + 1, r, L, R, v);
return ok;
}
void update(int o, int l, int r, int L, int R, int v) {
if(L <= l && r <= R) {
lz[o] = v;
sumv[o] = 1ll * (r - l + 1) * v;
maxv[o] = v;
return;
}
push_down(o, l, r);
int mid = (l + r) >> 1;
if(L <= mid) update(o << 1, l, mid, L, R, v);
if(R > mid) update(o << 1|1, mid + 1, r, L, R, v);
push_up(o);
}
ll query(int o, int l, int r, int L, int R) {
if(L <= l && r <= R) {
return sumv[o];
}
push_down(o, l, r);
int mid = (l + r) >> 1;
ll res = 0;
if(L <= mid) res += query(o << 1, l, mid, L, R);
if(R > mid) res += query(o << 1|1, mid + 1, r, L, R);
return res;
}
int main() {
while(cin >> n && n) {
for(int i = 1; i <= n; i++) cin >> a[i];
Getmex();
build(1, 1, n);
ll ans = query(1, 1, n, 1, n);
for(int i = 1; i < n; i++) {
int Next = nxt[i] - 1;
int L = query_l(1, 1, n, i + 1, Next, a[i]);
if(L != -1) update(1, 1, n, L, Next, a[i]);
ans += query(1, 1, n, i + 1, n);
}
cout << ans << '\n';
}
return 0;
}
HDU4747:Mex(线段树区间修改)的更多相关文章
- Codeforces Round #442 (Div. 2) E Danil and a Part-time Job (dfs序加上一个线段树区间修改查询)
题意: 给出一个具有N个点的树,现在给出两种操作: 1.get x,表示询问以x作为根的子树中,1的个数. 2.pow x,表示将以x作为根的子树全部翻转(0变1,1变0). 思路:dfs序加上一个线 ...
- 题解报告:hdu 1698 Just a Hook(线段树区间修改+lazy懒标记的运用)
Problem Description In the game of DotA, Pudge’s meat hook is actually the most horrible thing for m ...
- poj 2528 线段树区间修改+离散化
Mayor's posters POJ 2528 传送门 线段树区间修改加离散化 #include <cstdio> #include <iostream> #include ...
- E - Just a Hook HDU - 1698 线段树区间修改区间和模版题
题意 给出一段初始化全为1的区间 后面可以一段一段更改成 1 或 2 或3 问最后整段区间的和是多少 思路:标准线段树区间和模版题 #include<cstdio> #include& ...
- HDU 4027 Can you answer these queries? (线段树区间修改查询)
描述 A lot of battleships of evil are arranged in a line before the battle. Our commander decides to u ...
- poj2528 Mayor's posters(线段树区间修改+特殊离散化)
Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...
- hiho_1078_线段树区间修改
题目 给定一组数,要求进行若干次操作,这些操作可以分为两种类型: (1) CMD 1 beg end value 将数组中下标在[beg, end] 区间内数字都变为value (2) CMD 2 b ...
- HDU-4747 Mex 线段树
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4747 题意:求一个数列中,所有mex(L,R)的和. 注意到mex是单调不降的,那么首先预处理出mex ...
- [置顶] hdu4747 Mex 线段树
题意:给你一个序列,让你求出对于所有区间<i, j>的mex和,mex表示该区间没有出现过的最小的整数. 思路:从时限和点数就可以看出是线段树,并且我们可以枚举左端点i, 然后求出所有左端 ...
随机推荐
- Codeforces Global Round 4 题解
技不如人,肝败吓疯…… 开场差点被 A 题意杀了,幸好仔细再仔细看,终于在第 7 分钟过掉了. 跟榜.wtf 怎么一群人跳题/倒序开题? 立刻紧张,把 BC 迅速切掉,翻到了 100+. 开 D.感觉 ...
- [LeetCode] 436. Find Right Interval 找右区间
Given a set of intervals, for each of the interval i, check if there exists an interval j whose star ...
- 从excel中转存sql
1.pom文件 <?xml version="1.0" encoding="UTF-8"?> <project xmlns="htt ...
- C# HTTP系列2 HttpWebReponse类
系列目录 [已更新最新开发文章,点击查看详细] System.Net.HttpWebReponse 类提供 WebResponse 类的特定于HTTP的实现. 例子 下面的示例返回一个从Htt ...
- HTML连载27-层叠性&优先级&!important用法
一.层叠性 1.定义:CSS处理冲突的一种能力 2.注意点:层叠性只有在多个选择器中“同一标签”,然后又设置了“相同的属性”,才会发生层叠性 3.CSS缩写:Cascading StyleSheet ...
- Mysql char(10) 与 varchar(10)的区别
DROP TABLE test_string; ), col_varchar )); INSERT INTO `test_string` VALUES ('mysql', 'mysql'); 在创建数 ...
- https的原理入门
现在基本上互联网上访问的地址都是使用HTTPS协议了,只有局域网才会使用HTTP协议,因此了解HTTPS十分重要. HTTP存在的问题 上过网的朋友都知道,网络是非常不安全的.尤其是公共场所有很多免费 ...
- EFCore 2.0的IEntityTypeConfiguration<TEntity>的使用!
通过新建一个类来实现 IEntityTypeConfiguration 这个接口,将EFCore中的实体配置写在单独的配置类中,便于修改和维护. OnModelCreating代码: protect ...
- Huawei LiteOS简介
Huawei LiteOS简介 Huawei LiteOS是华为面向物联网领域开发的一个基于实时内核的轻量级操作系统.本项目属于华为物联网操作系统Huawei LiteOS源码,现有基础内核支持任务管 ...
- 2019 淘友天下java面试笔试题 (含面试题解析)
本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.淘友天下等公司offer,岗位是Java后端开发,因为发展原因最终选择去了淘友天下,入职一年时间了,也成为了面 ...