泡泡一分钟:BLVD: Building A Large-scale 5D Semantics Benchmark for Autonomous Driving
BLVD: Building A Large-scale 5D Semantics Benchmark for Autonomous Driving
BLVD:构建自主驾驶的大规模5D语义基准
Jianru Xue, Jianwu Fang, Tao Li, Bohua Zhang, Pu Zhang, Zhen Ye and Jian Dou
Abstract—In autonomous driving community, numerous benchmarks have been established to assist the tasks of 3D/2D object detection, stereo vision, semantic/instance segmentation. However, the more meaningful dynamic evolution of the surrounding objects of ego-vehicle is rarely exploited, and lacks a large-scale dataset platform. To address this, we introduce BLVD, a large-scale 5D semantics benchmark which does not concentrate on the static detection or semantic/instance segmentation tasks tackled adequately before. Instead, BLVD aims to provide a platform for the tasks of dynamic 4D (3D+temporal) tracking, 5D (4D+interactive) interactive event recognition and intention prediction.This benchmark will boost the deeper understanding of traffic scenes than ever before. We totally yield 249,129 3D annotations, 4,902 independent individuals for tracking with the length of overall 214,922 points, 6,004 valid fragments for 5D interactive event recognition, and 4,900 individuals for 5D intention prediction. These tasks are contained in four kinds of scenarios depending on the object density (low and high) and light conditions (daytime and nighttime). The benchmark can be downloaded from our project site https://github.com/VCCIV/BLVD/.
在自动驾驶社区中,已经建立了许多基准来辅助3D / 2D物体检测,立体视觉,语义/实例分割的任务。然而,自我车辆周围物体的更有意义的动态演化很少被利用,并且缺乏大规模的数据集平台。为了解决这个问题,我们引入了BLVD,这是一个大规模的5D语义基准测试,它不专注于之前充分处理的静态检测或语义/实例分割任务。相反,BLVD旨在为动态4D(3D +时间)跟踪,5D(4D +交互式)交互式事件识别和意图预测的任务提供平台。该基准将比以往更加深入地了解交通场景。 我们完全产生249,129个3D注释,4,902个独立个体用于跟踪,总长度为214,922个点,6,004个有效片段用于5D交互事件识别,4,900个用于5D意图预测。这些任务包含在四种场景中,具体取决于对象密度(低和高)和光照条件(白天和夜晚)。 基准测试可以从我们的项目站点https://github.com/VCCIV/BLVD/下载。
在本文中,我们为自动驾驶构建了一个大规模的5D语义基准,该基准在各种有趣的场景下被捕获,并且经过有效和准确的校准,同步和整流。与以前的静态检测/分割任务不同,我们专注于对交通场景的更深入理解。具体而言,4D跟踪,5D交互事件识别和5D意图预测的任务在该基准测试中启动。通过仔细的注释,基准产生了249,129个3D注释,4,902个独立实例用于跟踪,总长度为214,922个点,6,004个用于5D交互式事件识别的3D注释,以及4,900个用于5D意图预测的个体。这些注释是在不同的光照条件下(白天和夜晚),不同密度的参与者(低密度和高密度)和不同的驾驶场景(高速公路和城市)收集的。
泡泡一分钟:BLVD: Building A Large-scale 5D Semantics Benchmark for Autonomous Driving的更多相关文章
- 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...
- Lessons learned developing a practical large scale machine learning system
原文:http://googleresearch.blogspot.jp/2010/04/lessons-learned-developing-practical.html Lessons learn ...
- 论文笔记之:Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation
Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google 2016.10.06 官方 ...
- 快速高分辨率图像的立体匹配方法Effective large scale stereo matching
<Effective large scale stereo matching> In this paper we propose a novel approach to binocular ...
- Introducing DataFrames in Apache Spark for Large Scale Data Science(中英双语)
文章标题 Introducing DataFrames in Apache Spark for Large Scale Data Science 一个用于大规模数据科学的API——DataFrame ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 17—Large Scale Machine Learning 大规模机器学习
Lecture17 Large Scale Machine Learning大规模机器学习 17.1 大型数据集的学习 Learning With Large Datasets 如果有一个低方差的模型 ...
- [C12] 大规模机器学习(Large Scale Machine Learning)
大规模机器学习(Large Scale Machine Learning) 大型数据集的学习(Learning With Large Datasets) 如果你回顾一下最近5年或10年的机器学习历史. ...
- Computer Vision_33_SIFT:Improving Bag-of-Features for Large Scale Image Search——2010
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...
- 泡泡一分钟:Exploiting Points and Lines in Regression Forests for RGB-D Camera Relocalization
Exploiting Points and Lines in Regression Forests for RGB-D Camera Relocalization 利用回归森林中的点和线进行RGB-D ...
随机推荐
- golang并发基础
1. go协程(go routine) go原生支持并发:goroutine和channel. go协程是与其他函数或方法一起并发运行的函数和方法.go协程可以看作是轻量级线程. 调用函数或者方法时, ...
- mysql的innodb数据存储结构
数据库磁盘读取与系统磁盘读取 1,系统从磁盘中读取数据到内存时是以磁盘块(block)为基本单位,位于同一个磁盘块中的数据会被一次性读取出来. 2,innodb存储引擎中有页(Page)的概念,页 ...
- HTML&CSS基础-html标签的实体
HTML&CSS基础-html标签的实体 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.HTML源代码 <!DOCTYPE html> <html&g ...
- Linux之RHEL7root密码破解(三)
Linux系列root密码破解第三种方式,利用修改boot分区里的开机启动顺序来修改密码,即我们进入BIOS,修改boot启动顺序为CD-ROM: 接下来按F10保存退出 选择Troubleshoot ...
- CentOS Linux更改MySQL数据库目录位置
引言: 由于MySQL的数据库太大,默认安装的/var盘已经再也无法容纳新增加的数据,没有办法,只能想办法转移数据的目录. 下面我整理一下把MySQL从/var/lib/mysql目录下面转移到/ho ...
- oracle 字符串分隔去重函数
create or replaceFUNCTION "SF_SPLIT_ACCOUNT_ID_LIST" ( account_id_list IN VARCHAR2)RETURN ...
- python笔记41-虚拟环境virtualenv
前言 如果你是一个python初学者,我是不建议你搞python虚拟环境的,我看到很多python的初学者同学,使用最新版的pycharm,新建一个工程时候默认就是venu虚拟环境. 然后在使用cmd ...
- iptables 通用语句
iptables -t filter -nvL --line-number | grep destination -t : 指定表 {fillter|nat|mangle|raw} -v : 显示详 ...
- Mybatis框架-@Param注解
回顾一下上一个小demo中存在的问题,是是根据用户的id修改用户的密码,我们只是修改了用户的密码,结果我们的在写接口方法的时候掺入的参数确实一个User对象,这样让别人看到我们的代码真的是很难读懂啊! ...
- 第三方登录绑定csrf漏洞利用
作者:pmiaowu 文章:https://www.yuque.com/pmiaowu/web_security_1/sq87w6 这里需要使用到一个微博账号与两个某厂商账号 条件: 1.微博账号:1 ...