倍增法求lca:暗的连锁
https://loj.ac/problem/10131
#include<bits/stdc++.h>
using namespace std;
struct node{
int to,next;
}e[];
int head[],num=,N,n,m,ans;
int grand[][],depth[];
int f[],w[];
inline void add(int x,int y)
{
e[++num].to=y,e[num].next=head[x],head[x]=num;
}
inline void read(int &x)
{
x=;int f=;
char s=getchar();
while(s<''||s>''){if(s=='-')f=-;s=getchar();}
while(s>=''&&s<=''){x=x*+s-'';s=getchar();}
x*=f;
}
void dfs(int x)
{
for(int i=;i<=N;i++)grand[x][i]=grand[grand[x][i-]][i-];
for(int i=head[x];i;i=e[i].next)
{
int v=e[i].to;
if(v==grand[x][])continue;
depth[v]=depth[x]+;
grand[v][]=x;
dfs(v);
}
}
void init()
{
N=floor(log(n+0.0)/log(2.0));
depth[]=;
dfs();
}
inline int lca(int a,int b)
{
if(depth[a]>depth[b]) swap(a,b);
for(register int i=N;i>=;i--)
{
if(depth[a]<depth[b]&&depth[grand[b][i]]>=depth[a]) b=grand[b][i];
}
if(a==b)return a;
for(register int i=N;i>=;i--)
{
if(grand[a][i]!=grand[b][i]){a=grand[a][i],b=grand[b][i];}
}
return grand[a][];
}
void solve(int u,int fa)
{
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].to;if(v==fa) continue;
solve(v,u);f[u]+=f[v];
}
}
int main()
{
read(n),read(m);
for(int i=;i<n;i++)
{
int u,v;
read(u),read(v);
add(u,v);
add(v,u);
}
init();
for(int i=;i<=m;i++)
{
int x,y;
read(x),read(y);
w[x]++;w[y]++;
w[lca(x,y)]-=;
}
for(int i=;i<=n;i++) f[i]=w[i];
solve(,);
for(int i=;i<=n;i++)
{
if(f[i]==) ans+=m;
else if(f[i]==) ans++;
}
cout<<ans;
}
倍增法求lca:暗的连锁的更多相关文章
- HDU 2586 倍增法求lca
How far away ? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- 倍增法求LCA
倍增法求LCA LCA(Least Common Ancestors)的意思是最近公共祖先,即在一棵树中,找出两节点最近的公共祖先. 倍增法是通过一个数组来实现直接找到一个节点的某个祖先,这样我们就可 ...
- 倍增法求lca(最近公共祖先)
倍增法求lca(最近公共祖先) 基本上每篇博客都会有参考文章,一是弥补不足,二是这本身也是我学习过程中找到的觉得好的资料 思路: 大致上算法的思路是这样发展来的. 想到求两个结点的最小公共祖先,我们可 ...
- 树上倍增法求LCA
我们找的是任意两个结点的最近公共祖先, 那么我们可以考虑这么两种种情况: 1.两结点的深度相同. 2.两结点深度不同. 第一步都要转化为情况1,这种可处理的情况. 先不考虑其他, 我们思考这么一个问题 ...
- 倍增法求LCA(最近公共最先)
对于有根树T的两个结点u.v,最近公共祖先x=LCA(u,v)表示一个结点x,满足x是u.v的祖先且x的深度尽可能大. 如图,根据定义可以看出14和15的最近公共祖先是10, 15和16的最近公共 ...
- 在线倍增法求LCA专题
1.cojs 186. [USACO Oct08] 牧场旅行 ★★ 输入文件:pwalk.in 输出文件:pwalk.out 简单对比时间限制:1 s 内存限制:128 MB n个被自 ...
- 倍增法求LCA代码加详细注释
#include <iostream> #include <vector> #include <algorithm> #define MAXN 100 //2^MA ...
- 浅谈倍增法求解LCA
Luogu P3379 最近公共祖先 原题展现 题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入格式 第一行包含三个正整数 \(N,M,S\),分别表示树的结点个数.询问 ...
- RMQ(倍增法求ST)
解决什么问题:区间查询最值 倍增思想:每次得出结果的范围呈2的幂次增长,有人说相当于二分,目前我觉得相当于线段树的查找. 具体理解看代码: /*倍增法求ST*/ #include<math.h& ...
随机推荐
- memcached概述与基本操作
memcached 什么是memcached memcached之前是danga的一个项目,最早是为LiveJournal服务的,当初设计师为了加速LiveJournal访问速度而开发的,后来被很多大 ...
- c# Aspose.Cells 通过Excel模板生产excel数据再打印
多的不说,我们先来利用Northwind做两个小demo.先说说Aspose.Cells的模板语法: &=DataSource.Field,&=[DataSource].[Field] ...
- QT笔记--事件处理
1 事件是什么 这里的事件主要是用户输入事件,比如点击一个按钮,选中复选框等.当事件发生的时候,达到我们满意的效果. 2信号与槽 connect(A,XX,B,YY) 当A事件发生的时候,B中的处理函 ...
- 【转】Spring中@Async
Spring中@Async 在Java应用中,绝大多数情况下都是通过同步的方式来实现交互处理的:但是在处理与第三方系统交互的时候,容易造成响应迟缓的情况,之前大部分都是使用多线程来完成此类任务,其实, ...
- linux-sysbench
sysbench是一个模块化的.跨平台.多线程基准测试工具,主要用于评估测试各种不同系统参数下的数据库负载情况.关于这个项目的详细介绍请看:http://sysbench.sourceforge.ne ...
- js继承的几种方法理解和代码演示
1.属性继承 :call .apply:不建议使用浪费内存. function Person(name,age,sex){ this.name = name; this.age = age; this ...
- python大道——博客目录
python基础 第一章 计算机基础 计算机基础 第二章 python基础语法 python入门 第三章 基础数据类型和文件操作 整型.布尔.字符串 列表.字典.集合 公共功能.小数据池 hash ...
- Python进阶:程序界的垃圾分类回收
垃圾回收是 Python 自带的机制,用于自动释放不会再用到的内存空间: 什么是内存泄漏呢? 内存泄漏,并不是说你的内存出现了信息安全问题,被恶意程序利用了,而是指程序本身没有设计好,导致程序未能释放 ...
- AX导出excel设置格式
今天在AX2009里面写一个导出EXCEL,没有模版,这是第一次碰到,之后写完之后发现导出的数据格式不对. 到处取经之后得到一下结果: 定义一个 Com range; SysExcelCells ...
- [洛谷P5340][TJOI2019]大中锋的游乐场
题目大意:有$n(n\leqslant10^4)$个点,$m(m\leqslant10^5)$条边的无向图,每个点有一个属性$A/B$,要求$|cnt_A-cnt_B|\leqslant k(k\le ...