【51Nod 1769】Clarke and math2
【51Nod 1769】Clarke and math2
题面
题解
对于一个数论函数\(f\),\(\sum_{d|n}f(d)=(f\times 1)(n)\)。
其实题目就是要求\(g=f\times 1^k\)。
考虑\(1^k(n)\)怎么求,因为\(1(n)\)是个积性函数,所以\(1^k(n)\)也是个积性函数。
我们考虑对于\(n\)的每个质因子\(p\)和它的次数\(r\),求出对应函数的值。
那么就相当于在每个不同的\(i_{j-1}\)及\(i_j\)中插入一个质因子,表示乘上\(p\)倍,也可以在同一个位置插。
那么根据排列组合,这个问题的答案就是\(k-1+r\choose r\),然后把每个质因数的贡献乘起来就是答案。
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const int Mod = 1e9 + 7;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = (10ll * data + ch - '0') % Mod, ch = getchar();
return w == 1 ? data : (-data + Mod) % Mod;
}
int fpow(int x, int y) {
int res = 1;
while (y) {
if (y & 1) res = 1ll * res * x % Mod;
x = 1ll * x * x % Mod;
y >>= 1;
}
return res;
}
const int MAX_N = 5e5 + 5;
int fac[25], ifc[25], C[25];
int N, K, f[MAX_N], g[MAX_N], h[MAX_N], cur[MAX_N];
int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
fac[0] = 1; for (int i = 1; i <= 20; i++) fac[i] = 1ll * i * fac[i - 1] % Mod;
ifc[20] = fpow(fac[20], Mod - 2);
for (int i = 19; ~i; i--) ifc[i] = 1ll * ifc[i + 1] * (i + 1) % Mod;
N = gi(), K = gi();
for (int i = 1; i <= N; i++) f[i] = gi(), g[i] = 1, cur[i] = i;
for (int i = 0; i <= 20; i++) {
int nw = (i + K - 1) % Mod; C[i] = ifc[i];
for (int j = 0; j < i; j++) C[i] = 1ll * C[i] * (nw - j + Mod) % Mod;
}
for (int i = 2; i <= N; i++) {
if (cur[i] == 1) continue;
for (int j = i; j <= N; j += i) {
int k = 0;
while (cur[j] % i == 0) ++k, cur[j] /= i;
g[j] = 1ll * g[j] * C[k] % Mod;
}
}
for (int i = 1; i <= N; i++)
for (int j = i; j <= N; j += i)
h[j] = (h[j] + 1ll * f[i] * g[j / i]) % Mod;
for (int i = 1; i <= N; i++) printf("%d ", h[i]);
putchar('\n');
return 0;
}
【51Nod 1769】Clarke and math2的更多相关文章
- 【51Nod1769】Clarke and math2(数论,组合数学)
[51Nod1769]Clarke and math2(数论,组合数学) 题面 51Nod 题解 考虑枚举一个\(i_k\),枚举一个\(i\),怎么计算\(i_k\)对\(i\)的贡献. 把\(\f ...
- 【51NOD 1847】奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数)
[51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\( ...
- 【51Nod 1244】莫比乌斯函数之和
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 模板题... 杜教筛和基于质因子分解的筛法都写了一下模板. 杜教筛 ...
- 【51Nod 1501】【算法马拉松 19D】石头剪刀布威力加强版
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1501 dp求出环状不连续的前缀和,剩下东西都可以算出来,比较繁琐. 时间 ...
- 【51Nod 1622】【算法马拉松 19C】集合对
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1622 简单题..直接暴力快速幂 #include<cstdio&g ...
- 【51Nod 1616】【算法马拉松 19B】最小集合
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1616 这道题主要是查询一个数是不是原有集合的一个子集的所有数的gcd. ...
- 【51Nod 1674】【算法马拉松 19A】区间的价值 V2
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1674 对区间分治,统计\([l,r]\)中经过mid的区间的答案. 我的 ...
- 【hdu 5628】Clarke and math (Dirichlet卷积)
hdu 5628 Clarke and math 题意 Given f(i),1≤i≤n, calculate \(\displaystyle g(i) = \sum_{i_1 \mid i} \su ...
- 【51nod 1785】数据流中的算法
Description 51nod近日上线了用户满意度检测工具,使用高级人工智能算法,通过用户访问时间.鼠标轨迹等特征计算用户对于网站的满意程度. 现有的统计工具只能统计某一个窗口中,用户的满意程 ...
随机推荐
- angular修改端口号port
报错:Port 4200 is already in use. Use '--port' to specify a different port. 因为4200端口已被使用,请使用“--port”修改 ...
- 《一起学mysql》4
索引的使用 索引太少返回结果很慢,但是索引太多,又会占用空间.每次插入新记录时,索引都会针对变化重新排序 什么时候使用索引 1.where 从句中用到的字段 select * from tb ...
- python asyncio as_completed
#asyncio 没有提供http协议的接口 aiohttp import asyncio import socket from urllib.parse import urlparse async ...
- 解决 IDEA 无法找到 java.util.Date 的问题
原文首发于 studyidea.cn点击查看更多技巧 问题 最近在项目中频繁使用到 java.util.Date,但是使用 IDEA 提示查找 Date 类,却无法找到 java.util.Date. ...
- 使用T4模板同时生成多个类文件
代码: <#@ template language="C#" debug="false" hostspecific="true"#&g ...
- Python - 集合 - 第十一天
Python 集合 集合(set)是一个无序的不重复元素序列. 可以使用大括号 { } 或者 set() 函数创建集合,注意:创建一个空集合必须用 set() 而不是 { },因为 { } 是用来创建 ...
- Python 摘要算法hashlib 与hmac
参考链接:https://www.liaoxuefeng.com/wiki/1016959663602400/1017686752491744 摘要算法(也成为哈希算法)是用来防篡改的,因为我们的即使 ...
- 面向对象的六大原则之 接口隔离原则——ISP
ISP = Interface Segregation Principle ISP的定义如下: 1.客户端不应该依赖他不需要的接口 2.一个类对另外一个类的依赖性应该是建立在最小的接口上 3.不应 ...
- ES6之Proxy 的巧用
摘要: Proxy的骚操作. 作者:前端小智 原文:Proxy 的巧用 Fundebug经授权转载,版权归原作者所有. Proxy 介绍 使用Proxy,你可以将一只猫伪装成一只老虎.下面大约有6个例 ...
- 4-7 3D绘图
In [1]: import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D % ...