标签:树形dp,枚举,树的直径

一上来看到这个题就慌了,只想到了 $O(n^3)$ 的做法.

碰到这种题时要一步一步冷静地去分析,观察数据范围.

首先,$n\leqslant 5000$,所以可以先 $O(n)$ 枚举切断哪条边.

而如果暴力枚举连哪条边的话时间就是爆炸的,不妨冷静地分类讨论一下.

当断掉这条边后,就形成了两个小树.

那么,新树的直径无外乎只有 2 种情况:两个小树中直径的较大值(只经过一棵树的点)/经过两棵树的点.

对于第一种情况,当我们断掉这条边时就是确定好的,可以直接 O(n) 算.

而对于第二种情况,既然是每棵树都要经过一些点,不妨选择每棵树中延伸长度最小的直接连上.

由于这两种情况都是互不影响的,所以可以直接取最小值.

冷静分析,分类讨论.

#include <bits/stdc++.h>
using namespace std;
#define setIO(s) freopen(s".in","r",stdin)
const int N=5010;
int n,cnt=1,ans=453533453,tmp;
int hd[N],to[N<<1],nex[N<<1],dis[N<<1],f[N],g[N],maxson[N],check[N<<1],val[N<<1];
inline void add(int u,int v,int c)
{
nex[++cnt]=hd[u],hd[u]=cnt,to[cnt]=v,val[cnt]=c;
}
void dfs1(int u,int ff)
{
for(int i=hd[u];i;i=nex[i])
{
int v=to[i];
if(v==ff||check[i]) continue;
dfs1(v,u);
tmp=max(tmp,f[u]+f[v]+val[i]);
if(f[v]+val[i]>f[u]) g[u]=f[u],f[u]=f[v]+val[i],maxson[u]=v;
else if(f[v]+val[i]>g[u]) g[u]=f[v]+val[i]; }
}
void dfs2(int x,int ff,int maxx)
{
tmp=min(tmp,max(maxx,f[x]));
for(int i=hd[x];i;i=nex[i])
{
int v=to[i];
if(v==ff||check[i]) continue;
if(maxson[x]==v) dfs2(v,x,max(g[x]+val[i],maxx+val[i]));
else dfs2(v,x,max(f[x]+val[i],maxx+val[i]));
}
}
inline void init()
{
memset(f,0,sizeof(f));
memset(g,0,sizeof(g));
memset(maxson,0,sizeof(maxson));
}
int main()
{
// setIO("input");
int i,j;
scanf("%d",&n);
for(i=1;i<n;++i)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(u,v,w),add(v,u,w);
}
for(i=2;i<=cnt;i+=2)
{
init();
int d1,d2,d3,d4,x=to[i],y=to[i^1];
check[i]=check[i^1]=1;
tmp=0, dfs1(x,0), d1=tmp;
tmp=0, dfs1(y,0), d2=tmp;
tmp=10000000, dfs2(x,0,0), d3=tmp;
tmp=10000000, dfs2(y,0,0), d4=tmp;
ans=min(ans,max(max(d1,d2),d3+d4+val[i]));
check[i]=check[i^1]=0;
}
printf("%d\n",ans);
return 0;
}

  

BZOJ 4890: [Tjoi2017]城市 树形dp的更多相关文章

  1. [BZOJ 4890][TJOI2017]城市

    传送门 $ \color{green} {solution : }$ 我们可以暴力枚举断边,然后 $ O(n) $ 的跑一次换根 $ dp $,然后复杂度是 $ O(n * n) $ 的 #inclu ...

  2. Bzoj 1131[POI2008]STA-Station (树形DP)

    Bzoj 1131[POI2008]STA-Station (树形DP) 状态: 设\(f[i]\)为以\(i\)为根的深度之和,然后考虑从他父亲转移. 发现儿子的深度及其自己的深度\(-1\) 其余 ...

  3. BZOJ 4726: [POI2017]Sabota? 树形dp

    4726: [POI2017]Sabota? 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4726 Description 某个公司有n ...

  4. bzoj 2286(虚树+树形dp) 虚树模板

    树链求并又不会写,学了一发虚树,再也不虚啦~ 2286: [Sdoi2011]消耗战 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 5002  Sol ...

  5. BZOJ 4472 [Jsoi2015]salesman(树形DP)

    4472: [Jsoi2015]salesman Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 417  Solved: 192[Submit][St ...

  6. bzoj 3829: [Poi2014]FarmCraft 树形dp+贪心

    题意: $mhy$ 住在一棵有 $n$ 个点的树的 $1$ 号结点上,每个结点上都有一个妹子. $mhy$ 从自己家出发,去给每一个妹子都送一台电脑,每个妹子拿到电脑后就会开始安装 $zhx$ 牌杀毒 ...

  7. BZOJ 1369: [Baltic2003]Gem(树形dp)

    传送门 解题思路 直接按奇偶层染色是错的,\(WA\)了好几次,所以要树形\(dp\),感觉最多\(log\)种颜色,不太会证. 代码 #include<iostream> #includ ...

  8. bzoj 3743 [Coci2015]Kamp——树形dp+换根

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3743 树形dp+换根. “从根出发又回到根” 减去 “mx ” . 注意dfsx里真的要改那 ...

  9. BZOJ 1812: [Ioi2005]riv( 树形dp )

    树背包, 左儿子右兄弟来表示树, dp(x, y, z)表示结点x, x的子树及x的部分兄弟共建y个伐木场, 离x最近的伐木场是z时的最小代价. 时间复杂度O(N^2*K^2) ----------- ...

随机推荐

  1. MMKV 多进程K-V组件 MD

    Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...

  2. Oracle学习笔记(四)

    Oracle中的体系结构: oracle体系结构中的进程: 共享池相关的优化: drop table t purge; create table t as select * from dba_obje ...

  3. Kafka 生产者、消费者与分区的关系

    背景 最近和海康整数据对接, 需要将海康产生的结构化数据拿过来做二次识别. 基本的流程: 海康大数据 --> kafka server --> 平台 Kafka 的 topic 正常过车 ...

  4. Python进阶(八)----模块,import , from import 和 `__name__`的使用

    Python进阶(八)----模块,import , from import 和 __name__的使用 一丶模块的初识 #### 什么是模块: # 模块就是一个py文件(这个模块存放很多相似的功能, ...

  5. HTTP专业术语,你了解多少?

    HTTP协议是什么? 超文本传输协议(HTTP)是一种为分布式.协作式的,面向应用层的超媒体信息系统.它是一种通用的.无状态(stateless)的协议,除了应用于超文本传输外,它也可以应用于如名称服 ...

  6. 突然用xcode老版本调试老代码测试新机,报错"Could not find Developer Disk Image"回忆下

    转载:https://www.cnblogs.com/blogwithstudyofwyn/p/6003176.html 说明:更新了手机的到了iOS 10.0.2.真机调试时候提示"Cou ...

  7. 将windows共享文件夹挂载到Linux

    今天想用docker部署下 .net core的 服务,需要把代码文件从windows传到linux,以前一直都是拖拽的,这次安装的系统没有图形界面, 所以到网上找到了下面的这种方法,将共享文件夹挂载 ...

  8. react-router4的使用备注

    1.安装 react-router是核心库,在项目中不需要安装,web开发只需安装react-router-dom.native开发安装react-router-native. 2.url参数携带与获 ...

  9. Java 之 Response 文件下载案例

    文件下载需求: 1. 页面显示超链接 2. 点击超链接后弹出下载提示框 3. 完成图片文件下载 分析过程: 1. 超链接指向的资源如果能够被浏览器解析,则在浏览器中展示,如果不能解析,则弹出下载提示框 ...

  10. Gitlab 重置 root 密码

    要重置root密码,请先使用root权限登录服务器.使用以下命令启动Ruby on Rails控制台: gitlab-rails console production 等到控制台加载完毕,您可以通过搜 ...