矩阵乘法

。。。爆零了。。。

想到Floyd,却不知道怎么限制点数。。。

其实我们只要给Floyd加一维,dp[i][j][k]表示当前走过了i个点,从j到k的最短距离,然后这样可以倍增,最后看是否有i->i的距离<0

做dp或最短路之类的题的时候,如果限制条件较多,可以考虑加维度

#include<bits/stdc++.h>
using namespace std;
const int N = ;
int n, m, ans;
int Log[N];
struct matrix {
int a[N][N];
matrix() { memset(a, 0x3f3f, sizeof(a)); }
friend matrix operator * (const matrix &a, const matrix &b) {
matrix ret;
for(int k = ; k <= n; ++k)
for(int i = ; i <= n; ++i)
for(int j = ; j <= n; ++j) ret.a[i][j] = min(ret.a[i][j], a.a[i][k] + b.a[k][j]);
return ret;
}
} A[N], tmp;
bool judge(const matrix &a)
{
for(int i = ; i <= n; ++i) if(a.a[i][i] < ) return true;
return false;
}
int main()
{
scanf("%d%d", &n, &m);
for(int i = ; i <= n; ++i) A[].a[i][i] = tmp.a[i][i] = ;
for(int i = , u, v, w; i <= m; ++i) scanf("%d%d%d", &u, &v, &w), A[].a[u][v] = w;
Log[] = ;
for(int i = ; i <= n; ++i) Log[i] = Log[i >> ] + ;
for(int i = ; i <= Log[n]; ++i) A[i] = A[i - ] * A[i - ];
for(int i = Log[n]; i >= ; --i) if(!judge(A[i] * tmp)) tmp = tmp * A[i], ans += << i;
tmp = tmp * A[];
printf("%d\n", judge(tmp) ? ans + : );
return ;
}

bzoj4773的更多相关文章

  1. BZOJ4773 负环(floyd+倍增)

    倍增floyd求出经过<=2k条边时两点间最短路,一个点到自身的最短路就是包含该点的最小环.然后倍增找答案即可.注意初始时到自身的最短路设为0,这样求出的最短路就是经过<=2k条边的而不是 ...

  2. 【BZOJ4773】负环 倍增Floyd

    [BZOJ4773]负环 Description 在忘记考虑负环之后,黎瑟的算法又出错了.对于边带权的有向图 G = (V, E),请找出一个点数最小的环,使得 环上的边权和为负数.保证图中不包含重边 ...

  3. bzoj4773: 负环

    题解: 网上还有一种spfa+深度限制的算法 https://www.cnblogs.com/BearChild/p/6624302.html 是不加队列优化的spfa,我觉得复杂度上限是bellma ...

  4. 【BZOJ4773】负环 [SPFA][二分]

    负环 Time Limit: 100 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 在忘记考虑负环之后,黎瑟的算法又出错 ...

  5. 2018.11.09 bzoj4773: 负环(倍增+floyd)

    传送门 跟上一道题差不多. 考虑如果环上点的个数跟最短路长度有单调性那么可以直接上倍增+floyd. 然而并没有什么单调性. 于是我们最开始给每个点初始化一个长度为0的自环,于是就有单调性了. 代码: ...

  6. BZOJ4773: 负环(倍增Floyd)

    题意 题目链接 Sol 倍增Floyd,妙妙喵 一个很显然的思路(然而我想不到是用\(f[k][i][j]\)表示从\(i\)号点出发,走\(k\)步到\(j\)的最小值 但是这样复杂度是\(O(n^ ...

  7. bzoj4773: 负环(倍增floyd)

    浴谷夏令营例题...讲师讲的很清楚,没看题解代码就自己敲出来了 f[l][i][j]表示i到j走2^l条边的最短距离,显然有f[l][i][j]=min(f[l][i][j],f[l-1][i][k] ...

  8. 【ZJOI2017 Round1练习&BZOJ4773】D3T1 cycle(最小负环,倍增)

    题意:给定一个带权有向图,求点数最小的负环. 2 ⩽ n ⩽ 3000 ⩽ m ⩽ n(n - 1)1 ⩽ ui,vi ⩽ nabs(w[j])<= 10^4 思路:倍增思想 设d[i,j,k] ...

  9. bzoj4773 负环 倍增+矩阵

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4773 题解 最小的负环的长度,等价于最小的 \(len\) 使得存在一条从点 \(i\) 到自 ...

随机推荐

  1. Angular 路由⑦要素

    cnzt       http://www.cnblogs.com/zt-blog/p/7919185.html http://www.cnblogs.com/zt-blog/p/7919185.ht ...

  2. docker 配置 direct-lvm

    当前需要设置的宿主机是环境是搭建在vbox虚拟机上的centos7系统.测试环境中出现过一次意外情况,当时为了测试docker日志文件限制,运行了一个docker容器,但是后面忘记停止了,几天后发现了 ...

  3. 应用程序中的server错误,没有名称为“ServiceBehavior”的服务行为

    应用程序中的server错误,没有名称为"ServiceBehavior"的服务行为         今天在阅读"创建和使用Web服务"的相关内容,在浏览器中查 ...

  4. 取汉子拼音首字母的C#方法

    /// <summary> /// 获得一个字符串的汉语拼音码 /// </summary> /// <param name="strText"> ...

  5. People seldom do what they believe in. They do what is convenient, then repent.

    People seldom do what they believe in. They do what is convenient, then repent. 人们很少真正实践他们的理想.他们只做比较 ...

  6. flask-本地线程-请求上下文补充

    context(上下文)是flask里面非常好的设计,使用flask需要非常理解应用上下文和请求上下文这两个概念 本地线程 本地线程(thread local)希望不同的线程对于内容的修改只在线程内部 ...

  7. maven优化依赖

    maven-dependency-plugin最大的用途是帮助分析项目依赖,dependency:list能够列出项目最终解析到的依赖列表,dependency:tree能进一步的描绘项目依赖树,de ...

  8. 4. 基本TCP套接字编程

    基本函数接口 socket函数 #include <sys/socket.h> int socket(int family, int type, int protocol); 成功时返回一 ...

  9. 【C语言】统计数字在排序数组中出现的次数

    //数字在排序数组中出现的次数. //统计一个数字在排序数组中出现的次数.比如:排序数组{1,2,3,3,3,3,4,5}和数字3,因为3出现了4次,因此输出4. #include <stdio ...

  10. 基于redis集群实现的分布式锁,可用于秒杀商品的库存数量管理,有測试代码(何志雄)

    转载请标明出处. 在分布式系统中,常常会出现须要竞争同一资源的情况,本代码基于redis3.0.1+jedis2.7.1实现了分布式锁. redis集群的搭建,请见我的另外一篇文章:<>& ...