51nod 1574 排列转换(猜结论)
分析
猜了一下结论,居然对了..........具体操作是:假设排列s是1,2,3,...,nk为排列p中最大的 没有放到正确位置的数,k的位置为posk的右边一定有一个数x<=pos(因为<=pos的数有pos个,不可能全挤在pos-1个位置里)交换k和x,两个数都离目标更近了且没有走远路.重复这个步骤
猜了两次结论然后就对了???
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define F(i,a,b) for(int i=a;i<=b;++i)
#define R(i,a,b) for(int i=a;i<b;++i)
#define mem(a,b) memset(a,b,sizeof(a))
int n,x;
int a[200200],b[200200];
ll ans;
int main()
{
cin>>n;
F(i,1,n) cin>>x,a[x]=i;
F(i,1,n) cin>>x,b[x]=i;
F(i,1,n)
{
ans+=abs(a[i]-b[i]);
}
cout<<ans/2<<endl;
return 0;
}
51nod 1574 排列转换(猜结论)的更多相关文章
- 51nod 1574 排列转换(贪心+鸽巢原理)
题意:有两个长度为n的排列p和s.要求通过交换使得p变成s.交换 pi 和 pj 的代价是|i-j|.要求使用最少的代价让p变成s. 考虑两个数字pi和pj,假如交换他们能使得pi到目标的距离减少,p ...
- D. Minimum Diameter Tree 思维+猜结论
D. Minimum Diameter Tree 思维+猜结论 题意 给出一颗树 和一个值v 把该值任意分配到任意边上 使得\(\sum\limits_{i,j}p_{ij}=v\) 使得 这颗树任意 ...
- hdu 5976 Detachment 脑洞题 猜结论
题目链接 题意 将\(x\)拆成\(a_1+a_2+...+\)的形式,且\(a_1\lt a_2\lt...\),使得\(a_1*a_2*...\)取到最大值 思路 大胆猜结论. 首先拆分的形式中肯 ...
- 【CSP模拟赛】独立集(最长上升子序列&大力猜结论)
题目描述 有一天,一个名叫顺旺基的程序员从石头里诞生了.又有一天,他学会了冒泡排序和独 立集.在一个图里,独立集就是一个点集,满足任意两个点之间没有边.于是他就想把这两 个东西结合在一起.众所周知,独 ...
- Atcoder Grand Contest 031 D - A Sequence of Permutations(置换+猜结论)
Atcoder 题面传送门 & 洛谷题面传送门 猜结论神题. 首先考虑探究题目中 \(f\) 函数的性质,\(f(p,q)_{p_i}=q_i\leftarrow f(p,q)\circ p= ...
- 【BZOJ3425】Poi2013 Polarization 猜结论+DP
[BZOJ3425]Poi2013 Polarization Description 给定一棵树,可以对每条边定向成一个有向图,这张有向图的可达点对数为树上有路径从u到达v的点对(u,v)个数.求最小 ...
- 51nod 1250 排列与交换——dp
题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1250 仔细思考dp. 第一问,考虑已知 i-1 个数有多少种方案. ...
- 51Nod 1250 排列与交换
Description 统计 \(1...n\) 的排列,恰好进行 \(k\) 次相邻交换和至多进行 \(k\) 次交换生成的不同的序列个数. Sol DP. 好妙的题啊... 首先看第一个问题. 对 ...
- UVA 11636-Hello World!(水题,猜结论)
UVA11636-Hello World! Time limit: 1.000 seconds When you first made the computer to print the sentenc ...
随机推荐
- 安卓执行机制JNI、Dalvik、ART之间的比較 。android L 改动执行机制。
Android L默认採用ART执行环境.全然兼容64位移动处理器.Google称这将比此前的Dalvik模式性能提高两倍,可是会占用很多其它的内存空间.Android有三种执行模式:JNI.Dalv ...
- 用CSS美化你的HTML
CSS的简介: 1.CSS的定义:层叠样式表.属性和属性值用冒号分隔开,以分号结尾(这些符号都是英文的). 2.CSS得引入方式: 行内引入:<div style="这里写样式&quo ...
- 【转载】一些VS2013的使用技巧
1. Peek View 可以在不新建TAB的情况下快速查看.编辑一个函数的代码. 用法:在光标移至某个函数下,按下alt+F12. 然后在Peek窗口里可以继续按alt+F12.然后按ctrl+al ...
- javascript之scrollTop
下面的演示中,外层元素的高度值是200px,内层元素的高度值是300px.很明显,“外层元素中的内容”高过了“外层元素”本身.当向下拖动滚动条时,有部分内容会隐没在“外层元素的上边界”之外,scrol ...
- Python - 学习参考资料
官方reference: 1.Numpy的API Reference https://docs.scipy.org/doc/numpy/reference/routines.html 2.SciPy的 ...
- C#WinForm窗体监听/拦截操作动作
C#中的事件也是通过封装系统消息来实现的,如果你在WndProc函数中不处理该消息 那么,它会被交给系统来处理该消息,系统便会通过代理来实现鼠标单击的处理函数,因此你可以通过 WndProc函数来拦截 ...
- 利用NSMutableAttributedString实现label上字体大小颜色行间距的改变
UILabel *label = [[UILabel alloc]initWithFrame:CGRectMake(0, 0, self.frame.size.width, self.frame.si ...
- C# does not contain a constructor that takes no parameter
C# 中子类要重用父类的构造函数时, 一般会在子类构造函数后面调用 : base(paratype, para). 如果父类有一个參数个数为1的构造函数, 没有 0 參构造函数. 子类想要重用这个构造 ...
- ZOJ 3874 Permutation Graph 分治NTT
Permutation Graph Time Limit: 2 Seconds Memory Limit: 65536 KB Edward has a permutation {a1, a2 ...
- Educational Codeforces Round 9 E. Thief in a Shop NTT
E. Thief in a Shop A thief made his way to a shop. As usual he has his lucky knapsack with him. Th ...