题意:给出一个长度在 100 000 以内的正整数序列,大小不超过 10^ 12。求一个连续子序列,使得在所有的连续子序列中,

它们的GCD值乘以它们的长度最大。

析:暴力枚举右端点,然后在枚举左端点时,我们对gcd相同的只保留一个,那就是左端点最小的那个,只有这样才能保证是最大,然后删掉没用的。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
using namespace std :: tr1; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e5 + 5;
const int mod = 1e9 + 7;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
LL a[maxn];
struct node{
int posi, posj;
LL val;
bool operator < (const node &p) const{
return val < p.val || (val == p.val && posi < p.posi);
}
node(int p, int q, LL x) : posi(p), val(x), posj(q) { }
}; vector<node> v;
vector<node> :: iterator it, it1; int main(){
int T; cin >> T;
while(T--){
scanf("%d", &n);
for(int i = 0; i < n; ++i) scanf("%lld", a+i);
v.clear();
LL ans = 0;
for(int i = 0; i < n; ++i){
ans = Max(ans, a[i]);
for(int j = 0; j < v.size(); ++j){
ans = Max(ans, v[j].val * (v[j].posj-v[j].posi+1));
v[j].val = gcd(v[j].val, a[i]);
v[j].posj = i;
}
v.push_back(node(i, i, a[i]));
sort(v.begin(), v.end());
it = v.begin();
++it;
while(it != v.end()){
it1 = it; --it1;
if(it1->val == it->val) it = v.erase(it);
else ++it;
}
} for(int i = 0; i < v.size(); ++i)
ans = Max(ans, v[i].val * (v[i].posj-v[i].posi+1));
printf("%lld\n", ans);
}
return 0;
}
 

UVa 1642 Magical GCD (暴力+数论)的更多相关文章

  1. UVa 1642 - Magical GCD(数论)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  2. UVA - 1642 Magical GCD 数学

                                  Magical GCD The Magical GCD of a nonempty sequence of positive integer ...

  3. Gym 100299C && UVaLive 6582 Magical GCD (暴力+数论)

    题意:给出一个长度在 100 000 以内的正整数序列,大小不超过 10^ 12.求一个连续子序列,使得在所有的连续子序列中, 它们的GCD值乘以它们的长度最大. 析:暴力枚举右端点,然后在枚举左端点 ...

  4. uva 1642 Magical GCD

    很经典的题目,愣是没做出来.. 题意:给出一个序列,求一子序列,满足其GCD(子序列)* length(子序列)最大. 题解: 类似单调队列的思想,每次将前面所得的最大公约数与当前数进行GCD,若GC ...

  5. UVA 1642 Magical GCD(经典gcd)

    题意:给你n(n<=100000)个正整数,求一个连续子序列使序列的所有元素的最大公约数与个数乘积最大 题解:我们知道一个原理就是对于n+1个数与n个数的最大公约数要么相等,要么减小并且减小至少 ...

  6. UVA 1642 Magical GCD(gcd的性质,递推)

    分析:对于区间[i,j],枚举j. 固定j以后,剩下的要比较M_gcd(k,j) = gcd(ak,...,aj)*(j-k+1)的大小, i≤k≤j. 此时M_gcd(k,j)可以看成一个二元组(g ...

  7. 【bzoj4052】[Cerc2013]Magical GCD 暴力

    题目描述 给出一个长度在 100 000 以内的正整数序列,大小不超过 10^12.  求一个连续子序列,使得在所有的连续子序列中,它们的GCD值乘以它们的长度最大. 样例输入 1 5 30 60 2 ...

  8. Magical GCD UVA 1642 利用约数个数少来优化 给定n个数,求使连续的一段序列的所有数的最大公约数*数的数量的值最大。输出这个最大值。

    /** 题目:Magical GCD UVA 1642 链接:https://vjudge.net/problem/UVA-1642 题意:给定n个数,求使连续的一段序列的所有数的最大公约数*数的数量 ...

  9. UVA 10951 - Polynomial GCD(数论)

    UVA 10951 - Polynomial GCD 题目链接 题意:给定两个多项式,求多项式的gcd,要求首项次数为1,多项式中的运算都%n,而且n为素数. 思路:和gcd基本一样,仅仅只是传入的是 ...

随机推荐

  1. vim中末行去掉^M

    在Ubuntu系统中打开文件,发现文件中每一个末行都有^M,我们要做的是知道这一个无关的字符是什么作用,然后删除掉这一个无关的字符. 工具/原料   ubuntu操作系统 Vim编辑器 方法/步骤   ...

  2. 转:VMware中三种网络连接的区别

    转自:http://www.cnblogs.com/rainman/archive/2013/05/06/3063925.html VMware中三种网络连接的区别   1.概述 2.bridged( ...

  3. C#中使用byte[]数据,生成Bitmap

    /// <summary> /// 使用byte[]数据,生成256色灰度 BMP 位图 /// </summary> /// <param name="ori ...

  4. C# Backgroundworker(后台线程)的使用

    namespace BackgroundWorkderPauseSample { public partial class MainForm : Form { BackgroundWorker wor ...

  5. sql注入攻防 以php+mysql为例

    随着Web应用的高速发展和技术的不断成熟,对Web开发相关职位的需求量也越来越大,越来越多的人加入了Web开发的行列.但是由于程序员的水平参差不齐或是安全意识太低,很多程序员在编写代码时仅考虑了功能上 ...

  6. 关于MP4视频拖动的原理与分析(一)

    本来想说说关于mp4和一些常见视频文件格式方面的历史. 如今想想没啥必要.毕竟本文是在讲关于mp4点播拖动方面的技术细节. 绪论,前言神马的显得有点多余. 说起MP4.不得不提"Digita ...

  7. 李洪强iOS开发之 - enum与typedef enum的用法

    李洪强iOS开发之 - enum与typedef enum的用法 01 - 定义枚举类型 上面我们就在ViewController.h定义了一个枚举类型,枚举类型的值默认是连续的自然数,例如例子中的T ...

  8. Apache Qpid Broker云

    一.     什么是Broker云 Apathe Qpid 支持Broker Federation ,也就是Broker联盟或者叫做Broker云.Broker Federation可以通过配置消息路 ...

  9. 二分法和牛顿迭代实现开根号函数:OC的实现

    最近有人贴出BAT的面试题,题目链接. 就是实现系统的开根号的操作,并且要求一定的误差,其实这类题就是两种方法,二分法和牛顿迭代,现在用OC的方法实现如下: 第一:二分法实现 -(double)sqr ...

  10. IP数据报首部格式

    IP协议提供不可靠.无连接的数据报传送服务. 不可靠:尽力而为地传输,不保证IP数据报能成功到达目的地. 无连接:每一个数据报之间相互独立地进行路由选择,可不按发送顺序接收. IP首部格式例如以下: ...