python实现汉诺塔算法
汉诺塔
算法分析
1.步骤1:如果是一个盘子,直接将a柱子上的盘子从a移动到c
否则
2.步骤2:先将A柱子上的n-1个盘子借助C移动到B(图1)
已知函数形参为hanoi(n,a,b,c)
,这里调用函数的时候是A柱子上的n-1个,A借助C移动到B,所以调用函数hanoi(n-1,a,c,b)
3.步骤3:此时移动完如图1,但是还没有移动结束,首先要将A柱子上最后一个盘子直接移动到C(图2),调用函数hanoi(1,a,b,c)
4.步骤4:最后将B柱子上的n-1个盘子借助A移动到C(图3),调用函数hanoi(n-1,b,a,c)
这时递归调用就完成了
代码
def hanoi(n,a,b,c):
if n == 1:
print(a,'-->',c)
else:
hanoi(n-1,a,c,b)
hanoi(1,a,b,c)
hanoi(n-1,b,a,c)
# 测试
hanoi(3,a,b,c)
# A --> C
# A --> B
# C --> B
# A --> C
# B --> A
# B --> C
# A --> C
python实现汉诺塔算法的更多相关文章
- python解决汉诺塔问题
今天刚刚在博客园安家,不知道写点什么,前两天刚刚学习完python 所以就用python写了一下汉诺塔算法,感觉还行拿出来分享一下 首先看一下描述: from :http://baike.baidu. ...
- 汉诺塔算法详解之C++
汉诺塔: 有三根杆子A,B,C.A杆上有N个(N>1)穿孔圆环,盘的尺寸由下到上依次变小.要求按下列规则将所有圆盘移至C杆: 每次只能移动一个圆盘: 大盘不能叠在小盘上面. 提示:可将圆盘临时置 ...
- 汉诺塔算法的递归与非递归的C以及C++源代码
汉诺塔(又称河内塔)问题其实是印度的一个古老的传说. 开天辟地的神勃拉玛(和中国的盘古差不多的神吧)在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一 个小, ...
- python 游戏 —— 汉诺塔(Hanoita)
python 游戏 —— 汉诺塔(Hanoita) 一.汉诺塔问题 1. 问题来源 问题源于印度的一个古老传说,大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆 ...
- Java-Runoob-高级教程-实例-方法:03. Java 实例 – 汉诺塔算法-un
ylbtech-Java-Runoob-高级教程-实例-方法:03. Java 实例 – 汉诺塔算法 1.返回顶部 1. Java 实例 - 汉诺塔算法 Java 实例 汉诺塔(又称河内塔)问题是源 ...
- java利用递归实现汉诺塔算法
package 汉诺塔; //引入Scanner包,用于用户输入 import java.util.Scanner; public class 汉诺塔算法 { public static void m ...
- java实现汉诺塔算法
package com.ywx.count; import java.util.Scanner; /** * @author Vashon * date:20150410 * * 题目:汉诺塔算法(本 ...
- 汉诺塔算法c++源代码(递归与非递归)[转]
算法介绍: 其实算法非常简单,当盘子的个数为n时,移动的次数应等于2^n - 1(有兴趣的可以自己证明试试看).后来一位美国学者发现一种出人意料的简单方法,只要轮流进行两步操作就可以了.首先把三根柱 ...
- 【学习】Python解决汉诺塔问题
参考文章:http://www.cnblogs.com/dmego/p/5965835.html 一句话:学程序不是目的,理解就好:写代码也不是必然,省事最好:拿也好,查也好,解决问题就好! ...
随机推荐
- HDU 4691 后缀数组+RMQ
思路: 求一发后缀数组,求个LCP 就好了 注意数字有可能不只一位 (样例2) //By SiriusRen #include <bits/stdc++.h> using namespac ...
- Codeforces 1131 (div 2)
链接:http://codeforces.com/contest/1131 A Sea Battle 利用良心出题人给出的图,不难看出答案为\(2*(h1+h2)+2*max(w1,w2)+4\)由于 ...
- 通过路由器的IP映射来解决,两个不同IP地址的PC机之间的从LAN口到WAN口的单向通讯问题
1.问题假设: 在B机中IP地址与子网掩码都固定,网关是路由器的LAN口的IP地址,我们希望通过路由器来实现B机与A机之间的单向通讯问题,也就是说B可以ping通A且可以访问A提供的FTP站点. 2. ...
- Git学习笔记(2)-初探Git
1.创建版本库 (1)设置Git的配置变量.这些设置会在全局文件(.gitconfig)或系统文件(/etc/gitconfig)中做永久记录 $ git config --global user.n ...
- WebApi实现IHttpControllerSelector问题
一.让Web API路由配置也支持命名空间参数/// <summary> /// controller /// 选择器 /// </summary> ...
- 151. [USACO Dec07] 建造路径
★★ 输入文件:roads.in 输出文件:roads.out 简单对比 时间限制:1 s 内存限制:128 MB 译 by CmYkRgB123 描述 Farmer John 刚刚得 ...
- cocos2dx在windows下搭建环境android报错
报错:Program bash is not found in PATH (如果按照我的方法来的话是没有这个错误的,我之前用别的方法的时候有但是后来还是没解决,写出来放到这里做参考吧) 参考原文: ...
- 02使用常规步骤编译NanoPiM1Plus的Android4.4.2
02使用常规步骤编译NanoPiM1Plus的Android4.4.2 大文实验室/大文哥 壹捌陆捌零陆捌捌陆捌贰 21504965 AT qq.com 完成时间:2017/12/5 17:51 版本 ...
- 初始MongoDB------将MongoDB创建为Windows服务
上一遍我写的是关于基本的MongoDB的安装,可能不是很详细,也写得很不好,不过这次我们会详细的说说,如果将MongoDB部署在你的Windows电脑上. 1.配置环境变量 如果每次都要在CMD进入M ...
- 6.11 将分割数据转换为多值IN列表
问题 已经有了分隔数据,想要将其转换为WHERE子句IN列表中的项目.考虑下面的字符串: 7654,7698,7782,7788 要将该字符串用在WHERE子句中,但是下面的SQL语句是错误的,因为E ...