题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3567

Eight II

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 130000/65536 K (Java/Others)
Total Submission(s): 3420    Accepted Submission(s): 742

Problem Description
Eight-puzzle, which is also called "Nine grids", comes from an old game.

In this game, you are given a 3 by 3 board and 8 tiles. The tiles are numbered from 1 to 8 and each covers a grid. As you see, there is a blank grid which can be represented as an 'X'. Tiles in grids having a common edge with the blank grid can be moved into
that blank grid. This operation leads to an exchange of 'X' with one tile.

We use the symbol 'r' to represent exchanging 'X' with the tile on its right side, and 'l' for the left side, 'u' for the one above it, 'd' for the one below it.

A state of the board can be represented by a string S using the rule showed below.

The problem is to operate an operation list of 'r', 'u', 'l', 'd' to turn the state of the board from state A to state B. You are required to find the result which meets the following constrains:
1. It is of minimum length among all possible solutions.
2. It is the lexicographically smallest one of all solutions of minimum length.

 
Input
The first line is T (T <= 200), which means the number of test cases of this problem.

The input of each test case consists of two lines with state A occupying the first line and state B on the second line.
It is guaranteed that there is an available solution from state A to B.

 
Output
For each test case two lines are expected.

The first line is in the format of "Case x: d", in which x is the case number counted from one, d is the minimum length of operation list you need to turn A to B.
S is the operation list meeting the constraints and it should be showed on the second line.

 
Sample Input
2
12X453786
12345678X
564178X23
7568X4123
 
Sample Output
Case 1: 2
dd
Case 2: 8
urrulldr
 
Author
zhymaoiing
 
Source

题解:

POJ1077 的强化版。

问:为什么加了vis判重比不加vis判重还要慢?

答:因为当引入vis判重时,就需要知道棋盘的状态,而计算一次棋盘的状态,就需要增加(8+7+……1)次操作,结果得不偿失。

更新:其实IDA*算法不能加vis判重,因为IDA*的本质就是dfs, 根据dfs的特性, 第一次被访问所用的步数并不一定是最少步数,所以如果加了vis判重,就默认取了第一次被访问时所用的步数,而这个步数不一定是最优的。所以第二份代码是错误的,即使过了oj的数据。

未加vis判重(202MS):

2017-09-10 10:25:57 Accepted 3567 202MS 1712K

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e6+; //M为棋盘, pos_goal为目标状态的每个数字所在的位置, pos_goal[dig] = pos,
//即表明:在目标状态中,dig所在的位置为pos。pos_goal与M为两个互逆的数组。
int M[MAXN], pos_goal[MAXN]; int fac[] = { , , , , , , , , };
int dir[][] = { ,, ,-, ,, -, };
char op[] = {'d', 'l', 'r', 'u' }; int cantor(int s[]) //获得哈希函数值
{
int sum = ;
for(int i = ; i<; i++)
{
int num = ;
for(int j = i+; j<; j++)
if(s[j]<s[i]) num++;
sum += num*fac[-i];
}
return sum+;
} int dis_h(int s[]) //获得曼哈顿距离
{
int dis = ;
for(int i = ; i<; i++)
if(s[i]!=)
{
int x = i/, y = i%;
int xx = pos_goal[s[i]]/, yy = pos_goal[s[i]]%; //此处须注意
dis += abs(x-xx) + abs(y-yy);
}
return dis;
} char path[];
int kase, nextd;
bool IDAstar(int loc, int depth, int pre, int limit)
{
int h = dis_h(M);
if(depth+h>limit)
{
nextd = min(nextd, depth+h);
return false;
} if(h==)
{
path[depth] = '\0';
printf("Case %d: %d\n", kase, depth);
puts(path);
return true;
} int x = loc/;
int y = loc%;
for(int i = ; i<; i++)
{
if(i+pre==) continue; //方向与上一步相反, 剪枝
int xx = x + dir[i][];
int yy = y + dir[i][];
if(xx>= && xx<= && yy>= && yy<=)
{
int tmploc = xx*+yy;
swap(M[loc], M[tmploc]);
path[depth] = op[i];
if(IDAstar(xx*+yy, depth+, i, limit))
return true;
swap(M[loc], M[xx*+yy]);
}
}
return false;
} int main()
{
int T;
char str[];
scanf("%d",&T);
for(kase = ; kase<=T; kase++)
{
int loc;
scanf("%s", str);
for(int i = ; i<; i++)
{
if(str[i]=='X') M[i] = , loc = i;
else M[i] = str[i]-'';
} scanf("%s", str);
for(int i = ; i<; i++)
{
if(str[i]=='X') pos_goal[] = i;
else pos_goal[str[i]-''] = i;
} for(int limit = dis_h(M); ; limit = nextd) //迭代加深搜
{
nextd = INF;
if(IDAstar(loc, , INF, limit))
break;
}
}
}

加了vis判重(936MS)

2017-09-10 10:26:10 Accepted 3567 936MS 5620K

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e6+; int M[MAXN], pos_goal[MAXN]; int fac[] = { , , , , , , , , };
int dir[][] = { ,, ,-, ,, -, };
char op[] = {'d', 'l', 'r', 'u' }; int cantor(int s[]) //获得哈希函数值
{
int sum = ;
for(int i = ; i<; i++)
{
int num = ;
for(int j = i+; j<; j++)
if(s[j]<s[i]) num++;
sum += num*fac[-i];
}
return sum+;
} int dis_h(int s[]) //获得曼哈顿距离
{
int dis = ;
for(int i = ; i<; i++)
if(s[i]!=)
{
int x = i/, y = i%;
int xx = pos_goal[s[i]]/, yy = pos_goal[s[i]]%;
dis += abs(x-xx) + abs(y-yy);
}
return dis;
} char path[];
int kase, nextd, vis[MAXN];
bool IDAstar(int loc, int depth, int pre, int limit)
{
int h = dis_h(M);
if(depth+h>limit)
{
nextd = min(nextd, depth+h);
return false;
} if(h==)
{
path[depth] = '\0';
printf("Case %d: %d\n", kase, depth);
puts(path);
return true;
} int x = loc/;
int y = loc%;
for(int i = ; i<; i++)
{
if(i+pre==) continue; //方向与上一步相反, 剪枝
int xx = x + dir[i][];
int yy = y + dir[i][];
if(xx>= && xx<= && yy>= && yy<=)
{
int tmploc = xx*+yy;
swap(M[loc], M[tmploc]);
int status = cantor(M);
if(!vis[status])
{
vis[status] = ;
path[depth] = op[i];
if(IDAstar(xx*+yy, depth+, i, limit))
return true;
vis[status] = ;
}
swap(M[loc], M[xx*+yy]);
}
}
return false;
} int main()
{
int T;
char str[];
scanf("%d",&T);
for(kase = ; kase<=T; kase++)
{
int loc;
scanf("%s", str);
for(int i = ; i<; i++)
{
if(str[i]=='X') M[i] = , loc = i;
else M[i] = str[i]-'';
} scanf("%s", str);
for(int i = ; i<; i++)
{
if(str[i]=='X') pos_goal[] = i;
else pos_goal[str[i]-''] = i;
} vis[cantor(M)] = ;
for(int limit = dis_h(M); ; limit = nextd) //迭代加深搜
{
nextd = INF;
ms(vis,);
if(IDAstar(loc, , INF, limit))
break;
}
}
}

HDU3567 Eight II —— IDA*算法的更多相关文章

  1. 【学时总结】 ◆学时·II◆ IDA*算法

    [学时·II] IDA*算法 ■基本策略■ 如果状态数量太多了,优先队列也难以承受:不妨再回头看DFS-- A*算法是BFS的升级,那么IDA*算法是对A*算法的再优化,同时也是对迭代加深搜索(IDF ...

  2. HUD 1043 Eight 八数码问题 A*算法 1667 The Rotation Game IDA*算法

    先是这周是搜索的题,网站:http://acm.hdu.edu.cn/webcontest/contest_show.php?cid=6041 主要内容是BFS,A*,IDA*,还有一道K短路的,.. ...

  3. LEETCODE —— Best Time to Buy and Sell Stock II [贪心算法]

    Best Time to Buy and Sell Stock II Say you have an array for which the ith element is the price of a ...

  4. HDU4513 吉哥系列故事——完美队形II Manacher算法

    题目链接:https://vjudge.net/problem/HDU-4513 吉哥系列故事——完美队形II Time Limit: 3000/1000 MS (Java/Others)    Me ...

  5. 八数码(IDA*算法)

    八数码 IDA*就是迭代加深和A*估价的结合 在迭代加深的过程中,用估计函数剪枝优化 并以比较优秀的顺序进行扩展,保证最早搜到最优解 需要空间比较小,有时跑得比A*还要快 #include<io ...

  6. HDU1560 DNA sequence —— IDA*算法

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1560 DNA sequence Time Limit: 15000/5000 MS (Java/Oth ...

  7. IDA*算法——骑士精神

    例题 骑士精神 Description 在一个5×5的棋盘上有12个白色的骑士和12个黑色的骑士, 且有一个空位.在任何时候一个骑士都能按照骑士的走法(它可以走到和它横坐标相差为1,纵坐标相差为2或者 ...

  8. UVA - 11212 Editing a Book(IDA*算法+状态空间搜索)

    题意:通过剪切粘贴操作,将n个自然段组成的文章,排列成1,2,……,n.剪贴板只有一个,问需要完成多少次剪切粘贴操作可以使文章自然段有序排列. 分析: 1.IDA*搜索:maxn是dfs的层数上限,若 ...

  9. 还不会ida*算法?看完这篇或许能理解点。

    IDA* 算法分析 IDA* 本质上就是带有估价函数和迭代加深优化的dfs与,A * 相似A *的本质便是带 有估价函数的bfs,估价函数是什么呢?估价函数顾名思义,就是估计由目前状态达 到目标状态的 ...

随机推荐

  1. Day 9 Linux samba & ngnix

    (摘) Samba服务 一.Samba简介  Samba是在Linux和UNIX系统上实现SMB协议的一个免费软件,由服务器及客户端程序构成.SMB(Server Messages Block,信息服 ...

  2. 洛谷——P1025 数的划分

    P1025 数的划分 题目描述 将整数n分成k份,且每份不能为空,任意两个方案不相同(不考虑顺序). 例如:n=7,k=3,下面三种分法被认为是相同的. 1,1,5; 1,5,1; 5,1,1; 问有 ...

  3. ubuntu下安装翻译软件

    原文: http://sixipiaoyang.blog.163.com/blog/static/6232358820144146386437/ Ubuntu下常用的翻译软件有StarDict,Gol ...

  4. Bestcoder Tom and matrix

    问题描述 Tom放学回家的路上,看到天空中出现一个矩阵.Tom发现,如果矩阵的行.列从0开始标号,第i行第j列的数记为ai,j,那么ai,j=Cji 如果i < j,那么ai,j=0 Tom突发 ...

  5. luogu P3865 【模板】ST表

    题目背景 这是一道ST表经典题——静态区间最大值 请注意最大数据时限只有0.8s,数据强度不低,请务必保证你的每次查询复杂度为 O(1)O(1) 题目描述 给定一个长度为 NN 的数列,和 MM 次询 ...

  6. MongoDB学习day10--数据库导入导出

    在 Mongodb 中我们使用 mongodump 命令来备份 MongoDB 数据. 该命令可以导出所有数据到指定目录中.mongodump 命令可以通过参数指定导出的数据量级转存的服务器. 使用m ...

  7. 使用git 高效多人合作

    复习一下... 附加学习链接: http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000/) ...

  8. [HTML5] Show Images of Differing Resolutions Depending on the Viewport Width with srcset

    For small viewports, we want to save bandwidth and we may be dealing with slow speeds; so it's very ...

  9. firefox os 开发模拟器1.4版本号安装开发具体解释

    首先在使用firefox os 模拟器的时候必须先下载firefox 浏览器,这个是众多web开发人员必备的工具,下载地址firefox 浏览器 .在最新的官方版本号是1.5版的模拟器,可是如今还不是 ...

  10. pcapReader——源代码分析

    一.简单介绍 pcapReader是ndpi开源中的一个example. 大家能够从<ndpi directory>/example/pcapReader.c中找到它的源码.通过pcapl ...