POJ3680 Intervals —— 区间k覆盖问题(最小费用流)
题目链接:https://vjudge.net/problem/POJ-3680
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 8711 | Accepted: 3726 |
Description
You are given N weighted open intervals. The ith interval covers (ai, bi) and weighs wi. Your task is to pick some of the intervals to maximize the total weights under the limit that no point in the real axis is covered more than k times.
Input
The first line of input is the number of test case.
The first line of each test case contains two integers, N and K (1 ≤ K ≤ N ≤ 200).
The next N line each contain three integers ai, bi, wi(1 ≤ ai < bi ≤ 100,000, 1 ≤ wi ≤ 100,000) describing the intervals.
There is a blank line before each test case.
Output
For each test case output the maximum total weights in a separate line.
Sample Input
4 3 1
1 2 2
2 3 4
3 4 8 3 1
1 3 2
2 3 4
3 4 8 3 1
1 100000 100000
1 2 3
100 200 300 3 2
1 100000 100000
1 150 301
100 200 300
Sample Output
14
12
100000
100301
Source
题意:
数轴上有一些带权的区间, 选出权值和尽量大的一些区间, 使得任意一个数最多被k个区间覆盖。
题解:
可用最小费用流解决,构图方法如下:
1.把数轴上每个数作为一个点。
2.对于相邻的点,连一条边:i-->i+1, 容量为k, 费用为0。i-->i+1设为k,保证了x-->i(0<=x<i)的流量不高于k。因此,还需在数轴的最右边增加一个汇点, 数轴的最后一个点连向此汇点,容量为k, 费用为0。
3.对于区间[u, v], 连一条边:u-->v,容量为1, 费用为-w。
4.以数轴最左端的点作为源点,跑最小费用流, 把得到的最小花费取反,即为答案。
5.由于此题数轴的范围比较大,而实际用到的点却很少,所以可以先对数轴进行离散化。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int MAXM = 1e5+;
const int MAXN = +; struct Edge
{
int to, next, cap, flow, cost;
}edge[MAXM];
int tot, head[MAXN];
int pre[MAXN], dis[MAXN];
bool vis[MAXN];
int N; void init(int n)
{
N = n;
tot = ;
memset(head, -, sizeof(head));
} void add(int u, int v, int cap, int cost)
{
edge[tot].to = v; edge[tot].cap = cap; edge[tot].cost = cost;
edge[tot].flow = ; edge[tot].next = head[u]; head[u] = tot++;
edge[tot].to = u; edge[tot].cap = ; edge[tot].cost = -cost;
edge[tot].flow = ; edge[tot].next = head[v]; head[v] = tot++;
} bool spfa(int s, int t)
{
queue<int>q;
for(int i = ; i<N; i++)
{
dis[i] = INF;
vis[i] = false;
pre[i] = -;
} dis[s] = ;
vis[s] = true;
q.push(s);
while(!q.empty())
{
int u = q.front();
q.pop();
vis[u] = false;
for(int i = head[u]; i!=-; i = edge[i].next)
{
int v = edge[i].to;
if(edge[i].cap>edge[i].flow && dis[v]>dis[u]+edge[i].cost)
{
dis[v] = dis[u]+edge[i].cost;
pre[v] = i;
if(!vis[v])
{
vis[v] = true;
q.push(v);
}
}
}
}
if(pre[t]==-) return false;
return true;
} int minCostMaxFlow(int s, int t, int &cost)
{
int flow = ;
cost = ;
while(spfa(s,t))
{
int Min = INF;
for(int i = pre[t]; i!=-; i = pre[edge[i^].to])
{
if(Min>edge[i].cap-edge[i].flow)
Min = edge[i].cap-edge[i].flow;
}
for(int i = pre[t]; i!=-; i = pre[edge[i^].to])
{
edge[i].flow += Min;
edge[i^].flow -= Min;
cost += edge[i].cost*Min;
}
flow += Min;
}
return flow;
} int interval[][];
int M[MAXN];
int main()
{
int T, n, k;
scanf("%d", &T);
while(T--)
{
scanf("%d%d", &n, &k);
int cnt = ;
for(int i = ; i<=n; i++)
{
scanf("%d%d%d", &interval[i][],&interval[i][],&interval[i][]);
M[cnt++] = interval[i][];
M[cnt++] = interval[i][];
}
M[cnt++] = INF;
sort(M, M+cnt);
cnt = unique(M, M+cnt)-M; init(cnt);
for(int i = ; i<cnt-; i++)
{
add(i, i+, k, );
}
for(int i = ; i<=n; i++)
{
int left = lower_bound(M, M+cnt, interval[i][])-M;
int right = lower_bound(M, M+cnt, interval[i][])-M;
add(left, right, , -interval[i][]);
} int min_cost;
int start = , end = cnt-;
minCostMaxFlow(start, end, min_cost);
printf("%d\n", -min_cost);
}
}
POJ3680 Intervals —— 区间k覆盖问题(最小费用流)的更多相关文章
- poj3680 Intervals 区间k覆盖问题 最小费用最大流 建图巧妙
/** 题目:poj3680 Intervals 区间k覆盖问题 最小费用最大流 建图巧妙 链接:http://poj.org/problem?id=3680 题意:给定n个区间,每个区间(ai,bi ...
- ACM-ICPC 2018 焦作赛区网络预赛 F. Modular Production Line (区间K覆盖-最小费用流)
很明显的区间K覆盖模型,用费用流求解.只是这题N可达1e5,需要将点离散化. 建模方式步骤: 1.对权值为w的区间[u,v],加边id(u)->id(v+1),容量为1,费用为-w; 2.对所有 ...
- hdu4106 区间k覆盖问题(连续m个数,最多选k个数) 最小费用最大流 建图巧妙
/** 题目:hdu4106 区间k覆盖问题(连续m个数,最多选k个数) 最小费用最大流 建图巧妙 链接:http://acm.hdu.edu.cn/showproblem.php?pid=4106 ...
- CF802C Heidi and Library hard 费用流 区间k覆盖问题
LINK:Heidi and Library 先说一下简单版本的 就是权值都为1. 一直无脑加书 然后发现会引起冲突,可以发现此时需要扔掉一本书. 扔掉的话 可以考虑扔掉哪一本是最优的 可以发现扔掉n ...
- POJ 3762 The Bonus Salary!(最小K覆盖)
POJ 3762 The Bonus Salary! 题目链接 题意:给定一些任务.每一个任务有一个时间,有k天.一个时间仅仅能运行一个任务,每一个任务有一个价值.问怎么安排能得到最多价值 思路:典型 ...
- 【树状数组套主席树】带修改区间K大数
P2617 Dynamic Rankings 题目描述给定一个含有n个数的序列a[1],a[2],a[3]……a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i+ ...
- 区间K大数
区间K大数 问题描述 给定一个序列,每次询问序列中第l个数到第r个数中第K大的数是哪个. 输入格式 第一行包含一个数n,表示序列长度. 第二行包含n个正整数,表示给定的序列. 第三个包含一个正整数m, ...
- 区间K 大数查询
算法训练 区间k大数查询 时间限制:1.0s 内存限制:256.0MB 问题描述 给定一个序列,每次询问序列中第l个数到第r个数中第K大的数是哪个. 输入格式 第一行包含一个数n,表示序列 ...
- 【BZOJ】3065: 带插入区间K小值
http://www.lydsy.com/JudgeOnline/problem.php?id=3065 题意:带插入.修改的区间k小值在线查询.(原序列n<=35000, 询问<=175 ...
随机推荐
- android开发里跳过的坑——TimePickerDialog onTimeSet不回调
在android6.0.1上测试发现TimePickerDialog的onTimeSet和DatePickerDialog的onDateSet不回调,查看SDK源码发现,TimePickerDialo ...
- Android数据存储之Shared Preferences共享数据存储
Android数据存储之Shared Preferences共享数据存储 在Android中一共提供了4种数据存储方式,但是由于存储的这些数据都是其应用程序私有的,所以如果需要在其他应用程序中使用这些 ...
- Virtualization基础
官方文档学习 https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/pdf/Virtualization_G ...
- plsql + 客户端 连接oracle数据库
一. 目录结构D:\oracle\instantclient_11_2D:\oracle\instantclient_11_2\tnsnames.ora 二. 环境变量 NLS_LANG = SIMP ...
- HDU 5905 Black White Tree(树型DP)
题目链接 Black White Tree 树型DP,设$f[i][j]$为以$i$为根的子树中大小为$j$的连通块中可以包含的最小黑点数目. $g[i][j]$为以$i$为根的子树中大小为$j$的 ...
- 【微信小程序】开发实战 之 「配置项」与「逻辑层」
微信小程序作为微信生态重要的一环,在实际生活.工作.商业中的应用越来越广泛.想学习微信小程序开发的朋友也越来越多,本文将在小程序框架的基础上就微信小程序项目开发所必需的基础知识及语法特点进行了详细总结 ...
- luogu P2085 最小函数值
题目描述 有n个函数,分别为F1,F2,...,Fn.定义Fi(x)=Ai*x^2+Bi*x+Ci (x∈N*).给定这些Ai.Bi和Ci,请求出所有函数的所有函数值中最小的m个(如有重复的要输出多个 ...
- ArcCatalog中通过ArcSDE向Oracle数据库中导入数据
将数据导入到Oracle指定的表空间的具体内容如下: 首先,在ArcCatalog中建立指定表空间的数据库连接(要以指定表空间的用户登录): 然后,在ArcCatlog中定位到数据源,选中并拷贝图层; ...
- kafka-0.8.1.1总结
文件夹 一. 基础篇 1. 开篇说明 2. 概念说明 3. 配置说明 4. znode分类 5. kafka协议分类 6. Kafka线 ...
- python各种类型转换
python各种类型转换 学习了:https://blog.csdn.net/shanliangliuxing/article/details/7920400 https://blog.csdn.ne ...