议题:动态规划(Dynamic Programming)

分析:

  • DP主要用于解决包含重叠子问题(Overlapping Subproblems)的最优化问题,其基本策略是将原问题分解为相似的子问题,通过求解并保存最简单子问题的解,然后逐步合并成为原问题的解,由于需 要查询子问题的解,所以需要一个表格记录子问题的解;DP仅适用于最优子结构问题(Optimal Substructure),也就是局部最优解相当于(或者近似于)全局最优解;

  • 对于原问题而言,当递归地自顶向下对问题进行求解时,每次产生的子问题可能与之前差生的子问题重复(如Fibonacci数列的求解);DP通过自底向上 求解子问题的解并将其保存在一个表格中,当再次遇到相同子问题时就直接通过查表得到其解(分治算法的子问题则是完全独立子空间);使用DP之前需要判定当 前问题是否具有下述三个特性:

    最优子结构:无论之前的状态和决策如何,当前的局部最优解是构成全局最优解的必要条件;

    无后效性:对于某个给定的阶段状态而言,在此之前的所有决策和状态都无法直接影响未来的决策,而只能通过当前的决策和状态影响;

    空间需求度:DP实际上是一种空间换时间的策略,在求解的过程中需要不断存储子问题的解并提供合理的查询方式;

  • DP的四个步骤

    划分阶段:注意划分之后的阶段必须是有序或者可排序的;

    确定状态和状态变量:将划分后的子问题使用不同状态表示,并满足无后效性;

    确定决策并写出状态转移方程:根据相邻两个阶段的状态关系得出转移方程;

    寻找边界条件:给出的转移方程是一个递归式,需要最终确定一个终止条件;

    最长公共子序列的DP解法

  • LCS问题与LIS(Largest Incremental Sub-sequence)问题类似,将原字符串A进行排序之后得到B,则A的LIS就是A和B的LCS。另外也可以直接使用DP;

  • 解法1:Largest Common Sub-string,如果将需求理解为公共子串的字符必须相连,则解法如下:将字符串A的每一个字符依次匹配B的每一个位置,时间复杂度O(MN),M 和N分别为A和B的长度,同样也可以使用DP填表的方式求解。KMP算法也可以求解,时间复杂度为O(M+N);

  • 解法2:Largest Common Sub-Sequence,如果将需求理解为公共子串的字符可以分离,则为经典的LCS问题(也可以理解为求两个集合的顺序交集),则解法如下:动态规划 (DP),动态规划一般应用于具有最优子结构的问题,也就是局部最优解可以决定全局最优解;动态规划的关键点在问题的拆分和状态关系的转移;

  • 给定first[1,m]和second[1,n],求LCS(first[1,m],second[1,n]),

    如果first和
    second的最后一个字符相同,则有first[m]=second[n]=result[k],这样问题化解为给定first[1,m-1]和
    second[1,n-1],求LCS(first[1,m-1],second[1,n-1]),原问题转化为
    LCS(first[1,m],second[1,n])= LCS(first[1,m-1],second[1,n-1]) +1

    如果first和second的最后一个字符不相同,则问题化解为result[1,k]= max{LCS(first[1,m-1],second[1,n]), LCS(first[1,m],second[1,n-1])

样例:

 /**
* 利用动态规划,使用簿记matrix的方法记录小子问题,然后重复利用
* 小子问题解决合成问题,最终解决整个问题。
* 在first和second组成的二维表中,一共有三种状态转移方式:
* 如果first[m]=second[n],则跳到first[m-1]和second[n-1]
* 如果first[m]!=second[n],则跳到first[m-1]和second[n],
* first[m]和second[n-1]的LCS中较大的一个
* 需要设定初始状态为0
* */
void lcs2(char *first, int lfirst, char *second, int lsecond) {
int *dir=new int[lfirst*lsecond];
int *dis=new int[lfirst*lsecond];
/**
* 保留first和second的第一个字符,将其dis设置为0,便于实现簿记
* dir矩阵中:0表示up-left移动;1表示left移动;2表示up移动
* */
for(int i=;i<lfirst;i++)
dis[i]=;
for(int i=;i<lsecond;i++)
dis[i*lfirst]=; for(int j=;j<lsecond;j++) {
for(int i=;i<lfirst;i++) {
if(first[i]==second[j]) {
/**
* 如果当前字符相等,则说明[i,j]长度的LCS为
* [i-1,j-1]长度的LCS 加上1;
* up-left移动
* */
dis[i+j*lfirst]=
dis[(i-)+(j-)*lfirst]+;
dir[i+j*lfirst]=;
} else if(dis[i+(j-)*lfirst] >
dis[(i-)+j*lfirst]) {
/**
* 如果当前字符不等,并且[i,j-1]长度的LCS大于
* [i-1,j]长度的LCS,则当前[i,j]长度的LCS等于
* [i,j-1]产度的LCS
* up移动
* */
dis[i+j*lfirst]=
dis[i+(j-)*lfirst];
dir[i+j*lfirst]=;
} else {
/**
* 如果当前字符不等,并且[i-1,j]长度的LCS大于
* [i,j-1]长度的LCS,则当前[i,j]长度的LCS等于
* [i-1,j]产度的LCS
* left移动
* */
dis[i+j*lfirst]=
dis[(i-)+j*lfirst];
dir[i+j*lfirst]=;
}
}
} showLCS(first, dir, lfirst-, lsecond-, lfirst); delete [] dir;
delete [] dis;
}

参考连接:
http://blog.csdn.net/v_july_v/article/details/6695482
http://en.wikipedia.org/wiki/Dynamic_programming
http://blog.csdn.net/sharpdew/article/details/763180

笔试算法题(44):简介 - 动态规划(Dynamic Programming)的更多相关文章

  1. 动态规划(Dynamic Programming)算法与LC实例的理解

    动态规划(Dynamic Programming)算法与LC实例的理解 希望通过写下来自己学习历程的方式帮助自己加深对知识的理解,也帮助其他人更好地学习,少走弯路.也欢迎大家来给我的Github的Le ...

  2. 6专题总结-动态规划dynamic programming

    专题6--动态规划 1.动态规划基础知识 什么情况下可能是动态规划?满足下面三个条件之一:1. Maximum/Minimum -- 最大最小,最长,最短:写程序一般有max/min.2. Yes/N ...

  3. 动态规划Dynamic Programming

    动态规划Dynamic Programming code教你做人:DP其实不算是一种算法,而是一种思想/思路,分阶段决策的思路 理解动态规划: 递归与动态规划的联系与区别 -> 记忆化搜索 -& ...

  4. [算法]动态规划(Dynamic programming)

    转载请注明原创:http://www.cnblogs.com/StartoverX/p/4603173.html Dynamic Programming的Programming指的不是程序而是一种表格 ...

  5. Python算法之动态规划(Dynamic Programming)解析:二维矩阵中的醉汉(魔改版leetcode出界的路径数)

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_168 现在很多互联网企业学聪明了,知道应聘者有目的性的刷Leetcode原题,用来应付算法题面试,所以开始对这些题进行" ...

  6. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  7. 动态规划 Dynamic Programming 学习笔记

    文章以 CC-BY-SA 方式共享,此说明高于本站内其他说明. 本文尚未完工,但内容足够丰富,故提前发布. 内容包含大量 \(\LaTeX\) 公式,渲染可能需要一些时间,请耐心等待渲染(约 5s). ...

  8. 动态规划-Dynamic Programming(DP)

    动态规划 动态规划方法心得 ​ 动态规划是一般的面试.笔试中的高频算法题,熟练掌握必要的.动态规划的中心思想是在解决当前问题时,可以由之前已经计算所得的结果并结合现在的限制条件递推出结果.由于此前的计 ...

  9. 动态规划系列(零)—— 动态规划(Dynamic Programming)总结

    动态规划三要素:重叠⼦问题.最优⼦结构.状态转移⽅程. 动态规划的三个需要明确的点就是「状态」「选择」和「base case」,对应着回溯算法中走过的「路径」,当前的「选择列表」和「结束条件」. 某种 ...

随机推荐

  1. PCB RabbitMQ的安装使用

    随着公司加大力度信息化建设,PCB企业各种各样的系统软件越来越多,整个公司订单流状态监控变得越来越不可控,是时候需采用新的方式来收集各系统状态节点状态了,以下记录RabbitMQ安装使用: 一.Rab ...

  2. 码云 fatal: Authentication failed for

    最近push代码到码云时,push失败,提示fatal: Authentication failed for,解决方法就是: 在git命令行中输入 git config --system --unse ...

  3. -------Pokemon Master------很水-------

    A - Pokemon Master Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%lld & %llu Submit Sta ...

  4. #undef及其用法

    简    介 在后面取消以前定义的宏定义 在此程序中,我们将取消在先前程序中对预处理器的定义. #include <stdio.h> int main( void ) { #define ...

  5. python包管理工具他们之间的关系

    python包管理工具之间的关系 现在的python包管理工具有很多,非常混乱,必须理清他们之间的关系才能更好的使用python构建强大的包关系系统工具. 首先:python官方推荐的第三方库是PyP ...

  6. 51nod 1874 字符串排序

    1874 字符串排序  基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题  收藏  关注 定义一个字符串的无序度为所有位置后面的字母比该位置的字母小的总数之和.比如&q ...

  7. Increasing Sequence CodeForces - 11A

    Increasing Sequence CodeForces - 11A 很简单的贪心.由于不能减少元素,只能增加,过程只能是从左到右一个个看过去,看到一个小于等于左边的数的数就把它加到比左边大,并记 ...

  8. 题解报告:hdu 1176 免费馅饼(递推dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1176 Problem Description 都说天上不会掉馅饼,但有一天gameboy正走在回家的小 ...

  9. 转 Docker和hadoop

    2017-06-21 朱洁 Docker很热,怎么形容?感觉开源除了spark技术,就是docker了,甚至把Go语言也带火了,把Go在TIOBE的排名从百名外带入主流语言的行列. Docker快成救 ...

  10. 转 关于shell脚本中#!/bin/bash and #!/bin/ksh 的说明

      1.在文件里面输入一系列命令,可以直接执行吗? 可以.作者认为,这时调用的是当前用户默认使用的shell. 如果其中一个命令有错,后面的命令还是会继续执行下去的 如果说使用了”&& ...