GROUP_ID

首先我们看看官方的解释:

大意是GROUP_ID用于区分相同分组标准的分组统计结果。

解释起来比较抽象,下面我们来看看具体的案例。

例1:单一分组

SQL> select group_id(),deptno,sum(sal) from emp group by rollup(deptno);

GROUP_ID()     DEPTNO    SUM(SAL)
---------- ---------- ----------
0 10 8750
0 20 10875
0 30 9400
0 29025

rollup(deptno)只是一个唯一的分组,所以产生的group_id()为0,代表这是同一个分组的结果。

下面我们来看看重复分组的情况

例2:重复分组

SQL> select group_id(),deptno,sum(sal) from emp group by rollup(deptno,deptno);

GROUP_ID()      DEPTNO    SUM(SAL)
---------- ---------- ----------
0 10 8750
0 20 10875
0 30 9400
1 10 8750
1 20 10875
1 30 9400
0 29025 7 rows selected.

group_id()为1代表这些是重复的分组。

注意:可通过having group_id() <1来剔除重复的分组。

老实说,我也看不出GROUP_ID在实际工作中的应用场景,姑且先记着。

GROUPING

其语法为:GROUPING(expr)

下面我们来看看官方的解释:

即GROUPING函数用于区分分组后的普通行和聚合行。如果是聚合行,则返回1,反之,则是0。

下面我们来看看具体的案例:

SQL> select grouping(deptno),grouping(job),deptno,job,sum(sal) from emp group by rollup(deptno,job);

GROUPING(DEPTNO) GROUPING(JOB)       DEPTNO JOB          SUM(SAL)
---------------- ------------- ---------- --------- ----------
0 0 10 CLERK 1300
0 0 10 MANAGER 2450
0 0 10 PRESIDENT 5000
0 1 10 8750
0 0 20 CLERK 1900
0 0 20 ANALYST 6000
0 0 20 MANAGER 2975
0 1 20 10875
0 0 30 CLERK 950
0 0 30 MANAGER 2850
0 0 30 SALESMAN 5600
0 1 30 9400
1 1 29025 13 rows selected.

首先我们看GROUPING(DEPTNO)这一列的结果,不难看出,凡是基于DEPTNO的汇总,GROUPING的结果均为0,因为最后一行是总的汇总,所以GROUPING的值为1.

基于这个逻辑,可以看出GROUPING(JOB)的值也是吻合的。

GROUPING_ID

GROUPING_ID是GROUPING的增强版,与GROUPING只能带一个表达式不同,它能带多个表达式。

语法如下:

GROUPING_ID(expr1, expr2, expr3,….)

下面我们来看看官方的解释:

GROUPING_ID在功能上相当于将多个GROUPING函数的结果串接成二进制数,返回的是这个二进制数对应的十进制数。

下面我们来看看具体的案例:

SQL> select grouping(deptno)g_d,grouping(job)g_j,grouping_id(deptno)gi_d,grouping_id(job)gi_j,grouping_id(deptno,job)gi_dj,grouping_id(job,deptno)gi_jd,deptno,job,sum(sal) from emp group by cube(deptno,job);

       G_D        G_J        GI_D       GI_J      GI_DJ      GI_JD    DEPTNO  JOB         SUM(SAL)
---------- ---------- ---------- ---------- ---------- ---------- ---------- --------- ----------
1 1 1 1 3 3 29025
1 0 1 0 2 1 CLERK 4150
1 0 1 0 2 1 ANALYST 6000
1 0 1 0 2 1 MANAGER 8275
1 0 1 0 2 1 SALESMAN 5600
1 0 1 0 2 1 PRESIDENT 5000
0 1 0 1 1 2 10 8750
0 0 0 0 0 0 10 CLERK 1300
0 0 0 0 0 0 10 MANAGER 2450
0 0 0 0 0 0 10 PRESIDENT 5000
0 1 0 1 1 2 20 10875
0 0 0 0 0 0 20 CLERK 1900
0 0 0 0 0 0 20 ANALYST 6000
0 0 0 0 0 0 20 MANAGER 2975
0 1 0 1 1 2 30 9400
0 0 0 0 0 0 30 CLERK 950
0 0 0 0 0 0 30 MANAGER 2850
0 0 0 0 0 0 30 SALESMAN 5600 18 rows selected.

大家看到这个案例估计都有点晕。。。

之所以这样提供,是为了呈现一个直观的结果进行对比。

解读这个结果,需要注意以下两点:

1> 若本行是某expr的汇总,那么该expr对应的二进制数位置为0否则置为1。

2> GROUPING_ID(expr1, expr2, expr3,….)的值其实是对应GROUPING(expr1),GROUPING(expr2),GROUPING(expr3)...值的串接。

首先看第一列,第三列,虽然一个是grouping(deptno),一个是grouping_id(deptno),因为只有一个表达式,所以两者的结果是一样的。第二列,第四列同样如此。

第五列的结果是第一列和第二列的数值的串接,然后返回的十进制数,以第二行为例,GI_DJ=2其实是二进制10转化为十进制后的数,其中1为G_D的值,0为G_J的值。

而GI_JD=1则是二进制01转化为十进制后的数,其中0为G_J的值,1为G_D的值。注意,串接的顺序为GROUPING_ID中表达式的顺序。

说了这么多,下面我们来看一个利用GROUPING_ID实现行列转换的案例。

with t as
( select grouping_id(deptno,job)gi_dj,deptno,job,count(*)cnt
from emp group by cube(deptno,job)),
t1 as
( select decode(gi_dj,0,deptno,1,deptno,99) deptno,decode(gi_dj,1,cnt,3,cnt)sub_total,
decode(job,'CLERK',cnt) c1,decode(job,'ANALYST',cnt)c2,decode(job,'MANAGER',cnt)c3,
decode(job,'SALESMAN',cnt)c4,decode(job,'PRESIDENT',cnt)c5
from t)
select deptno,max(sub_total) sub_total,max(c1)clerk,max(c2)analyst,
max(c3)manager,max(c4)salesman,max(c5)president
from t1 group by deptno order by deptno;

最后生成的结果如下:

    DEPTNO  SUB_TOTAL      CLERK     ANALYST    MANAGER     SALESMAN  PRESIDENT
---------- ---------- ---------- --------- ---------- ---------- ----------
10 3 1 1 1
20 5 2 2 1
30 6 1 1 4
99 14 4 2 3 4 1

其中,99代表合计,sub_total代表小计。这种统计类的需求在实际生产中还是应用蛮广的。

当然,该结果也可利用PIVOT函数实现,具体语句如下:

with t as(select grouping_id(deptno,job)gi_dj,deptno,job,count(*)cnt from emp group by cube(deptno,job)),
t1 as (select decode(gi_dj,0,deptno,1,deptno,99)deptno,decode(gi_dj,0,job,2,job,9)job,cnt from t)
select * from (select * from t1)pivot(sum(cnt)for job in ('9','CLERK','ANALYST','MANAGER','SALESMAN','PRESIDENT')) order by deptno;

参考资料:

1> http://docs.oracle.com/cd/E11882_01/server.112/e41084/functions070.htm#SQLRF00646

2> http://docs.oracle.com/cd/E11882_01/server.112/e41084/functions071.htm#SQLRF00647

3> http://docs.oracle.com/cd/E11882_01/server.112/e41084/functions072.htm#SQLRF00648

GROUP函数的更多相关文章

  1. GROUP函数-GROUP_ID,GROUPING,GROUPING_ID

    GROUP_ID 首先我们看看官方的解释: 大意是GROUP_ID用于区分相同分组标准的分组统计结果. 解释起来比较抽象,下面我们来看看具体的案例. 例1:单一分组 SQL> select gr ...

  2. Oracle的 listagg() WITHIN GROUP ()函数使用

    1.使用条件查询  查询部门为20的员工列表 -- 查询部门为20的员工列表    SELECT t.DEPTNO,t.ENAME FROM SCOTT.EMP t where t.DEPTNO = ...

  3. 关于MySQL的行转列的简单应用(二)---group函数

    MySQL的行转列.列转行.连接字符串  concat.concat_ws.group_concat函数用法使用方法:CONCAT(str1,str2,…) 返回结果为连接参数产生的字符串.如有任何一 ...

  4. Java正则表达式--Matcher.group函数的用法

    原来,group是针对()来说的,group(0)就是指的整个串,group(1) 指的是第一个括号里的东西,group(2)指的第二个括号里的东西. 最近学习正则表达式,发现Java中的一些术语与其 ...

  5. MongoDB中的group

    在Mongodb的查询中,有类似于SQL中group by功能的group函数.两者的功能有些类似,但是区别也是比较明显的. 对于SQL来说,group by的作用就是安装依据列来将数据表中的记录分成 ...

  6. MongoDB学习总结(三) —— 常用聚合函数

    上一篇介绍了MongoDB增删改查命令的基本用法,这一篇来学习一下MongoDB的一些基本聚合函数. 下面我们直奔主题,用简单的实例依次介绍一下. > count() 函数 集合的count函数 ...

  7. python第六天 函数 python标准库实例大全

    今天学习第一模块的最后一课课程--函数: python的第一个函数: 1 def func1(): 2 print('第一个函数') 3 return 0 4 func1() 1 同时返回多种类型时, ...

  8. mongodb mapredReduce 多个条件分组(group by)

    from:https://my.oschina.net/chiyong/blog/289138 Mongodb 没有传统数据库的group函数,如果分组需要走MapReduce.这种MR与Hadoop ...

  9. 文件属性,获取,设置文件属性chown stat函数

    转载:http://c.biancheng.net/cpp/html/326.html man 2 stat查看手册 int stat(const char *path, struct stat *b ...

随机推荐

  1. Ubuntu 18 通过ssh连接远程服务器

    ps -e | grep ssh 查看自己的Ubuntu是否开启ssh服务,如果我们要连其他的,那需要有 ssh-client的进程 如果我们的作为主机,那需要有sshd的进程 相应的安装方法: cl ...

  2. linux unzip和zip

    注:*压缩成限.zip格式文件 常用解压缩: [root@mysql test]# unzip -o test.zip -d tmp/ 将压缩文件test.zip在指定目录tmp下解压缩,如果已有相同 ...

  3. (一)python基础学习

    根据廖雪峰老师的python教程写一些学习总结! Python基础学习 1.使用list和tuple (1)list Python内置的一种数据类型是列表:list.list是一种有序的集合,可以随时 ...

  4. 题解报告:hdu 1098 Ignatius's puzzle

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1098 题目中文是这样的: 伊格内修斯在数学上很差,他遇到了一个难题,所以他别无选择,只能上诉埃迪. 这 ...

  5. Android偏好设置(2)为应用定义一个偏好设置xml

    1.Defining Preferences in XML Although you can instantiate new Preference objects at runtime, you sh ...

  6. sed练习第一节

    ed语法和基本命令 employee.txt文件内容如下: 101,John Doe,CEO 102,Jason Smith,IT Manager 103,Raj Reddy,Sysadmin 104 ...

  7. Vmware workstation12里如何正确快速安装可视化IDS系统Security Onion(图文详解)

    不多说,直接上干货! 首先,大家要明确: 问:安全洋葱能阻止入侵吗? 答:这一点,和OSSIM一样,不能阻止入侵. Security Onion基于Ubuntu,包含了入侵检测.网络安全监控.日志管理 ...

  8. easy ui combotree的操作

    1.获取combotree的选中值 $("#id").combotree("getValue"); 2.设置combotree的选中值 $('#id').com ...

  9. spring framework 第一章数据库管理(data access)

    spring data access 的网址:https://docs.spring.io/spring/docs/current/spring-framework-reference/index.h ...

  10. echarts 外观效果修改

    <!DOCTYPE html> <html> <head> <title></title> <link rel="style ...