题目链接:

D. World Tour

time limit per test

5 seconds

memory limit per test

512 megabytes

input

standard input

output

standard output

A famous sculptor Cicasso goes to a world tour!

Well, it is not actually a world-wide. But not everyone should have the opportunity to see works of sculptor, shouldn't he? Otherwise there will be no any exclusivity. So Cicasso will entirely hold the world tour in his native country — Berland.

Cicasso is very devoted to his work and he wants to be distracted as little as possible. Therefore he will visit only four cities. These cities will be different, so no one could think that he has "favourites". Of course, to save money, he will chose the shortest paths between these cities. But as you have probably guessed, Cicasso is a weird person. Although he doesn't like to organize exhibitions, he likes to travel around the country and enjoy its scenery. So he wants the total distance which he will travel to be as large as possible. However, the sculptor is bad in planning, so he asks you for help.

There are n cities and m one-way roads in Berland. You have to choose four different cities, which Cicasso will visit and also determine the order in which he will visit them. So that the total distance he will travel, if he visits cities in your order, starting from the first city in your list, and ending in the last, choosing each time the shortest route between a pair of cities — will be the largest.

Note that intermediate routes may pass through the cities, which are assigned to the tour, as well as pass twice through the same city. For example, the tour can look like that: . Four cities in the order of visiting marked as overlines:[1, 5, 2, 4].

Note that Berland is a high-tech country. So using nanotechnologies all roads were altered so that they have the same length. For the same reason moving using regular cars is not very popular in the country, and it can happen that there are such pairs of cities, one of which generally can not be reached by car from the other one. However, Cicasso is very conservative and cannot travel without the car. Choose cities so that the sculptor can make the tour using only the automobile. It is guaranteed that it is always possible to do.

Input
 

In the first line there is a pair of integers n and m (4 ≤ n ≤ 3000, 3 ≤ m ≤ 5000) — a number of cities and one-way roads in Berland.

Each of the next m lines contains a pair of integers ui, vi (1 ≤ ui, vi ≤ n) — a one-way road from the city ui to the city vi. Note that uiand vi are not required to be distinct. Moreover, it can be several one-way roads between the same pair of cities.

 
Output
 

Print four integers — numbers of cities which Cicasso will visit according to optimal choice of the route. Numbers of cities should be printed in the order that Cicasso will visit them. If there are multiple solutions, print any of them.

 
Example
 
input
8 9
1 2
2 3
3 4
4 1
4 5
5 6
6 7
7 8
8 5
output
2 1 8 7
Note

Let d(x, y) be the shortest distance between cities x and y. Then in the example d(2, 1) = 3, d(1, 8) = 7, d(8, 7) = 3. The total distance equals 13.

题意

给一个有向图,选取4个点,使dis[s1][s2]+dis[s2][s3]+dis[s3][s4]最大;

思路

先找出所有点对之间的最短距离,再暴力枚举s2,s3,对于s1和s4一定是选到s2最远的点和s3能最远到的点

AC代码

#include <bits/stdc++.h>
using namespace std;
#define Riep(n) for(int i=1;i<=n;i++)
#define Riop(n) for(int i=0;i<n;i++)
#define Rjep(n) for(int j=1;j<=n;j++)
#define Rjop(n) for(int j=0;j<n;j++)
#define mst(ss,b) memset(ss,b,sizeof(b));
typedef long long LL;
const LL mod=1e9+;
const double PI=acos(-1.0);
const int inf=0x3f3f3f3f;
const int N=1e5+;
int n,m;
int p[][],vis[];
vector<int>ve[];
struct node
{
int num,dis;
};
vector<node>to[],from[];
queue<int>qu;
int bfs(int x)
{
while(!qu.empty())qu.pop();
memset(vis,,sizeof(vis));
qu.push(x);
vis[x]=;
while(!qu.empty())
{
int fr=qu.front();
qu.pop();
vis[fr]=;
int len=ve[fr].size();
Riop(len)
{
if(p[x][ve[fr][i]]>p[x][fr]+)
{
p[x][ve[fr][i]]=p[x][fr]+;
if(!vis[ve[fr][i]])
{
vis[ve[fr][i]]=;
qu.push(ve[fr][i]);
}
}
}
}
}
int cmp(node x,node y)
{
return x.dis>y.dis;
}
int main()
{
scanf("%d%d",&n,&m);
Riep(n)
Rjep(n)
if(i!=j)p[i][j]=inf;
else p[i][j]=;
int u,v;
Riep(m)
{
scanf("%d%d",&u,&v);
ve[u].push_back(v);
}
Riep(n)bfs(i);
node x;
Riep(n)
{
Rjep(n)
{
if(p[i][j]!=inf&&i!=j)
{
x.num=i,x.dis=p[i][j];
to[j].push_back(x);
x.num=j;
from[i].push_back(x);
}
}
} Riep(n)sort(to[i].begin(),to[i].end(),cmp),sort(from[i].begin(),from[i].end(),cmp);
int dis=,ans1,ans2,ans3,ans4,s1,s2,s3,s4;
Riep(n)
{
s2=i;
Rjep(n)
{
s3=j;
if(i==j||p[i][j]==inf)continue;
for(int k=;k<&&k<to[i].size();k++)
{
if(i==to[i][k].num||j==to[i][k].num)continue;
s1=to[i][k].num;
for(int d=;d<&&d<from[j].size();d++)
{
if(i==from[j][d].num||j==from[j][d].num||s1==from[j][d].num)continue;
s4=from[j][d].num;
if(p[s1][s2]+p[s2][s3]+p[s3][s4]>dis)
{
dis=p[s1][s2]+p[s2][s3]+p[s3][s4];
ans1=s1,ans2=s2,ans3=s3,ans4=s4;
}
}
}
}
}
printf("%d %d %d %d\n",ans1,ans2,ans3,ans4); return ;
}

codeforces 667D D. World Tour(最短路)的更多相关文章

  1. Codeforces 667D World Tour 最短路

    链接 Codeforces 667D World Tour 题意 给你一个有向稀疏图,3000个点,5000条边. 问选出4个点A,B,C,D 使得 A-B, B-C, C-D 的最短路之和最大. 思 ...

  2. codeforces 689 Mike and Shortcuts(最短路)

    codeforces 689 Mike and Shortcuts(最短路) 原题 任意两点的距离是序号差,那么相邻点之间建边即可,同时加上题目提供的边 跑一遍dijkstra可得1点到每个点的最短路 ...

  3. Codeforces 667D World Tour【最短路+枚举】

    垃圾csdn,累感不爱! 题目链接: http://codeforces.com/contest/667/problem/D 题意: 在有向图中找到四个点,使得这些点之间的最短距离之和最大. 分析: ...

  4. World Tour CodeForces - 667D (bfs最短路)

    大意: 有向图, 求找4个不同的点ABCD, 使得d(A,B)+d(D,C)+d(C,A)最大

  5. Codeforces Round #349 (Div. 2) D. World Tour (最短路)

    题目链接:http://codeforces.com/contest/667/problem/D 给你一个有向图,dis[i][j]表示i到j的最短路,让你求dis[u][i] + dis[i][j] ...

  6. Codeforces Round #349 (Div. 1) B. World Tour 最短路+暴力枚举

    题目链接: http://www.codeforces.com/contest/666/problem/B 题意: 给你n个城市,m条单向边,求通过最短路径访问四个不同的点能获得的最大距离,答案输出一 ...

  7. Codeforces 545E. Paths and Trees 最短路

    E. Paths and Trees time limit per test: 3 seconds memory limit per test: 256 megabytes input: standa ...

  8. Codeforces 543 B. World Tour

    http://codeforces.com/problemset/problem/543/B 题意: 给定一张边权均为1的无向图. 问至多可以删除多少边,使得s1到t1的最短路不超过l1,s2到t2的 ...

  9. Codeforces 666 B. World Tour

    http://codeforces.com/problemset/problem/666/B 题意: 给定一张边权均为1的有向图,求四个不同的点A,B,C,D,使得dis[A][B]+dis[B][C ...

随机推荐

  1. [Bzoj1112][POI2008]砖块Klo(splay)

    1112: [POI2008]砖块Klo Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2353  Solved: 831[Submit][Statu ...

  2. Spring的IoC容器概述

    以下内容引用自http://wiki.jikexueyuan.com/project/spring/ioc-containers.html: IoC容器 Spring容器是Spring框架的核心.容器 ...

  3. TFS2018 获取所有Build变量及变量值

    添加一个Command Line 步骤,Tool设置为 cmd ,并设置参数为 /k set 注意:若在执行时出现如下报错信息,Tool的值改成 cmd.exe --20T02::.0416435Z ...

  4. Oracle 12c agent install for linux

    安装Agent代理 在EM11g时,agent安装是通过在被监制主机端下载agent代理并安装,在EM12c版本号上,能够在EM12c服务端.通过"推送"的方式把agent代理在远 ...

  5. Python基础语法07--面向对象+正则表达式

    Python 面向对象 Python从设计之初就已经是一门面向对象的语言,正因为如此,在Python中创建一个类和对象是很容易的.本章节我们将详细介绍Python的面向对象编程. 如果你以前没有接触过 ...

  6. [转]Go基础之锁的初识

    当我们的程序就一个线程的时候是不需要用到锁的,但是通常我们实际的代码不会是单个线程的,所有这个时候就需要用到锁了,那么关于锁的使用场景主要涉及到哪些呢? 当我们多个线程在读相同的数据的时候则是需要加锁 ...

  7. 转: memcache, redis, mongodb 对比

    http://db-engines.com/en/system/Memcached%3BMongoDB%3BRedis

  8. easyui datagrid client搜索、分页、排序

    easyui datagrid的排序默认是server端排序.能够用sorter实现client排序[2].client分页可用filter实现[3].client搜索相同能够用filter实现. 不 ...

  9. zoj 3573 Under Attack(线段树 标记法 最大覆盖数)

    Under Attack Time Limit:  10 Seconds      Memory Limit:  65536 KB  Doctor serves at a military air f ...

  10. 【微信支付】分享一个失败的案例 跨域405(Method Not Allowed)问题 关于IM的一些思考与实践 基于WebSocketSharp 的IM 简单实现 【css3】旋转倒计时 【Html5】-- 塔台管制 H5情景意识 --飞机 谈谈转行

    [微信支付]分享一个失败的案例 2018-06-04 08:24 by stoneniqiu, 2744 阅读, 29 评论, 收藏, 编辑 这个项目是去年做的,开始客户还在推广,几个月后发现服务器已 ...