【BZOJ2149】拆迁队(斜率优化DP+CDQ分治)
题目:
一个斜率优化+CDQ好题
分析:
先吐槽一下题意:保留房子反而要给赔偿金是什么鬼哦……
第一问是一个经典问题。直接求原序列的最长上升子序列是错误的。比如\(\{1,2,2,3\}\),选择\(\{1,2,3\}\)不改变后会发现无论如何修改都无法变成一个严格上升序列。只能选择\(\{1,2\}\),把原序列改成\(\{1,2,3,4\}\)。
考虑对于两个数\(a_i\)和\(a_j(j<i)\),\(a_i\)能接在\(a_j\)后面的充要条件是\(a_i-a_j\geq i-j\)(这样中间才能塞下\(i-j-1\)个数形成上升序列)。移项得到\(a_i-i\geq a_j-j\),所以应该把每个数减去它的编号作为权值然后求最长非降子序列。由于要求美观度为正整数,所以若\(a_i-i<0\),则\(i\)不能作为序列的开端。下面的代码展示了\(O(nlog_2n)\)求法(其中\(c[i]=a[i]-i\),\(f[i]\)表示以\(i\)结尾的最长非降子序列的长度)。
int solve()
{
int ans = 0;
memset(tmp, INF, sizeof(int[n + 1]));
for (int i = 1; i <= n; i++)
{
if (c[i] < 0)
f[i] = 0;
else
{
int pos = upper_bound(tmp + 1, tmp + ans + 1, c[i]) - tmp;
tmp[pos] = c[i];
ans = max(ans, pos);
f[i] = pos;
}
v[f[i]].push_back(i);
}
return ans;
}
然后来看第二问。设\(dp[i]\)为将前\(i\)个数变成单调上升序列的最小总花费。则\(dp[i]\)可以由\(dp[j]\)转移而来的必要条件是\(i>j\),\(a[i]-i>a[j]-j\)且\(f[i]=f[j]+1\)(若\(f[i]>f[j]+1\),则不满足“保留最多的旧房子”;若\(f[i]<f[j]+1\),说明你\(f[i]\)算错了)。
转移时,最优解显然是把\(a[k](j<k<i)\)变成一个以\(a[j]+1\)为首项,公差为\(1\)的等差数列。由于\(a[i]-i>a[j]-j\),所以改完以后一定有\(a[i-1]<a[i]\)
\]
整理一下,得到:
\]
可以根据\(f[i]\)分层,一起处理所有\(f[j]=k-1\)的\(j\)对\(f[i]=k\)的\(i\)的贡献。下面考虑每一层的情况。
未完待续……
代码:
方便起见,在序列首加一个\(0\)(\(a[0]=f[0]=0\))。这样可以保证改造后美观度为正(因为\(f[i]=1\)的\(dp[i]\)必然从\(dp[0]\)转移而来);在序列尾加一个无穷大作为\(a[n+1]\),\(dp[n+1]-a[n+1]\)即为答案。
#include <cstdio>
#include <algorithm>
#include <cctype>
#include <cstring>
#include <vector>
using namespace std;
namespace zyt
{
template<typename T>
inline void read(T &x)
{
char c;
bool f = false;
x = 0;
do
c = getchar();
while (c != '-' && !isdigit(c));
if (c == '-')
f = true, c = getchar();
do
x = x * 10 + c - '0', c = getchar();
while (isdigit(c));
if (f)
x = -x;
}
template<typename T>
inline void write(T x)
{
static char buf[20];
char *pos = buf;
if (x < 0)
putchar('-'), x = -x;
do
*pos++ = x % 10 + '0';
while (x /= 10);
while (pos > buf)
putchar(*--pos);
}
typedef long long ll;
typedef long double ld;
const int N = 1e5 + 10, INF = 0x3f3f3f3f;
const ll LINF = 0x3f3f3f3f3f3f3f3fLL;
int n, a[N], b[N], c[N], f[N], tmp[N];
ll dp[N];
vector<int> v[N];
int solve()
{
int ans = 0;
memset(tmp, INF, sizeof(int[n + 1]));
for (int i = 1; i <= n; i++)
{
if (c[i] < 0)
f[i] = 0;
else
{
int pos = upper_bound(tmp + 1, tmp + ans + 1, c[i]) - tmp;
tmp[pos] = c[i];
ans = max(ans, pos);
f[i] = pos;
}
v[f[i]].push_back(i);
}
v[0].push_back(0);
return ans;
}
inline ll x(const int i)
{
return i - a[i];
}
inline ll y(const int i)
{
return dp[i] - (ll)(i + 1) * a[i] + (ll)i * (i + 1) / 2;
}
inline ld ratio(const int i, const int j)
{
if (x(i) == x(j))
return y(i) < y(j) ? -LINF : LINF;
else
return (ld)(y(i) - y(j)) / (x(i) - x(j));
}
struct node
{
int pos;
bool type;
bool operator < (const node &b) const
{
return pos < b.pos;
}
}arr[N];
const int CHANGE = 0, QUERY = 1;
void CDQ(const int l, const int r)
{
if (l == r)
return;
int mid = (l + r) >> 1, i = l, j = mid + 1, k = l;
static node tmp[N];
static int st[N];
CDQ(l, mid), CDQ(mid + 1, r);
int top = 0;
while (i <= mid && j <= r)
{
if (x(arr[i].pos) >= x(arr[j].pos))
{
if (arr[i].type == CHANGE)
{
while (top > 1 && ratio(st[top - 2], st[top - 1]) < ratio(st[top - 1], arr[i].pos))
--top;
st[top++] = arr[i].pos;
}
tmp[k++] = arr[i++];
}
else
{
if (arr[j].type == QUERY && top)
{
int l = 0, r = top - 2, ans = top - 1;
while (l <= r)
{
int mid = (l + r) >> 1;
if (ratio(st[mid], st[mid + 1]) < arr[j].pos)
r = mid - 1, ans = mid;
else
l = mid + 1;
}
dp[arr[j].pos] = min(dp[arr[j].pos],
dp[st[ans]] +
(ll)((a[st[ans]] << 1) + arr[j].pos - st[ans]) * (arr[j].pos - st[ans] - 1) / 2
+ a[arr[j].pos] + b[arr[j].pos]);
}
tmp[k++] = arr[j++];
}
}
while (i <= mid)
tmp[k++] = arr[i++];
while (j <= r)
{
if (arr[j].type == QUERY && top)
{
int l = 0, r = top - 2, ans = top - 1;
while (l <= r)
{
int mid = (l + r) >> 1;
if (ratio(st[mid], st[mid + 1]) < arr[j].pos)
r = mid - 1, ans = mid;
else
l = mid + 1;
}
dp[arr[j].pos] = min(dp[arr[j].pos],
dp[st[ans]] +
(ll)((a[st[ans]] << 1) + arr[j].pos - st[ans]) * (arr[j].pos - st[ans] - 1) / 2
+ a[arr[j].pos] + b[arr[j].pos]);
}
tmp[k++] = arr[j++];
}
memcpy(arr + l, tmp + l, sizeof(node[r - l + 1]));
}
int work()
{
read(n);
for (int i = 1; i <= n; i++)
read(a[i]), c[i] = a[i] - i;
for (int i = 1; i <= n; i++)
read(b[i]);
a[++n] = INF;
c[n] = INF;
int ans = solve();
write(ans - 1), putchar(' ');
memset(dp, INF, sizeof(ll[n + 1]));
dp[0] = 0;
for (int i = 1; i <= ans; i++)
{
int cnt = 0;
for (int j = 0; j < v[i - 1].size(); j++)
if (dp[v[i - 1][j]] < LINF)
arr[++cnt] = (node){v[i - 1][j], CHANGE};
for (int j = 0; j < v[i].size(); j++)
arr[++cnt] = (node){v[i][j], QUERY};
sort(arr + 1, arr + cnt + 1);
CDQ(1, cnt);
}
write(dp[n] - a[n] - b[n]);
return 0;
}
}
int main()
{
return zyt::work();
}
【BZOJ2149】拆迁队(斜率优化DP+CDQ分治)的更多相关文章
- bzoj2149拆迁队 斜率优化dp+分治
2149: 拆迁队 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 397 Solved: 177[Submit][Status][Discuss] ...
- 【bzoj3672】[Noi2014]购票 斜率优化dp+CDQ分治+树的点分治
题目描述 给出一棵以1为根的带边权有根树,对于每个根节点以外的点$v$,如果它与其某个祖先$a$的距离$d$不超过$l_v$,则可以花费$p_vd+q_v$的代价从$v$到$a$.问从每个点到1花费 ...
- P4027 [NOI2007]货币兑换(斜率优化dp+cdq分治)
P4027 [NOI2007]货币兑换 显然,如果某一天要买券,一定是把钱全部花掉.否则不是最优(攒着干啥) 我们设$f[j]$为第$j$天时用户手上最多有多少钱 设$w$为花完钱买到的$B$券数 $ ...
- HDU 3824/ BZOJ 3963 [WF2011]MachineWorks (斜率优化DP+CDQ分治维护凸包)
题面 BZOJ传送门(中文题面但是权限题) HDU传送门(英文题面) 分析 定义f[i]f[i]f[i]表示在iii时间(离散化之后)卖出手上的机器的最大收益.转移方程式比较好写f[i]=max{f[ ...
- BZOJ 1492 [NOI2007]货币兑换Cash:斜率优化dp + cdq分治
传送门 题意 初始时你有 $ s $ 元,接下来有 $ n $ 天. 在第 $ i $ 天,A券的价值为 $ A[i] $ ,B券的价值为 $ B[i] $ . 在第 $ i $ 天,你可以进行两种操 ...
- APIO2010 特别行动队 & 斜率优化DP算法笔记
做完此题之后 自己应该算是真正理解了斜率优化DP 根据状态转移方程$f[i]=max(f[j]+ax^2+bx+c),x=sum[i]-sum[j]$ 可以变形为 $f[i]=max((a*sum[j ...
- [NOI2007]货币兑换 --- DP + 斜率优化(CDQ分治)
[NOI2007]货币兑换 题目描述: 小 Y 最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A 纪念券(以下简称 A 券)和 B 纪念券(以下简称 B 券). 每个持有金券的顾客都有一个 ...
- NOI 2007 货币兑换Cash (bzoj 1492) - 斜率优化 - 动态规划 - CDQ分治
Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个 ...
- bzoj 1492: [NOI2007]货币兑换Cash【贪心+斜率优化dp+cdq】
参考:http://www.cnblogs.com/lidaxin/p/5240220.html 虽然splay会方便很多,但是懒得写,于是写了cdq 首先要想到贪心的思路,因为如果在某天买入是能得到 ...
随机推荐
- Django 数据库操作之数据库连接
修改settings.py文件 """ Django settings for db_operation_demo project. Generated by 'djan ...
- HDU 2082 母函数法
#include <cstdio> #include <cstring> using namespace std; ] , dp[][]; int main() { // fr ...
- codevs3730 无线网络发射选址
题目描述 Description 随着智能手机的日益普及,人们对无线网的需求日益增大.某城市决定对城市内的公共场所覆盖无线网. 假设该城市的布局为由严格平行的129条东西向街道和129条南北向街道所形 ...
- JAVA内存模型与线程以及volatile理解
Java内存模型是围绕在并发过程中如何处理原子性.可见性.有序性来建立的. 一.主内存与工作内存 Java内存模型主要目标是在虚拟机中将变量存储到内存和从内存中取出变量.这里的变量包括:实例字段.静态 ...
- HDU——1130 How Many Trees?
How Many Trees? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- JSP计数器
1.JSP弥补了servlet页面显示的不足:jsp运行时候需要转化为servlet,本质上就是servlet:tomcat下的work目录下有jsp的servlet和对应的class文件;下次再调用 ...
- Java数组备忘录
前言 近期用Java做ACM题目的时候,常常忘记数组怎样实现静态初始化,所以这里记录一下Java数组使用的常识. Java数组常识 数组在Java中是一个对象,数组实例须要通过new操作符进行创建. ...
- PowerDesigner12.5和15.1的破解
不要相信网上盛传的powerdesigner的 license key注冊码,试了好多都无论用,不废话了,直接献上PowerDesigner12.5.PowerDesigner15.1的破解方法. P ...
- Cocos2d-html5入门之2048游戏
一.介绍 Cocos2d-JS是Cocos2d-x的Javascript版本,它的前身是Cocos2d-html5.在3.0版本以前叫做Cocos2d-html5,从3.0版本开始叫做Cocos2d- ...
- tableView优化
※ tableView优化 概括说:1.使用不透明视图.2.不要重复创建不必要的table cell.3.减少视图的数目.4.不要做多余的绘制工作.5.预渲染图像.6.不要阻塞主线程. 详细说:1.使 ...