BZOJ 3782 上学路线 ——动态规划 Lucas定理 中国剩余定理
我们枚举第一个经过的坏点,然后DP即可。
状态转移方程不是难点,难点在于组合数的处理。
将狼踩尽的博客中有很详细的证明过程,但是我只记住了结论
$n=a_1 * p^k+a_2*p^k-1...$
$m=b_1 * p^k+b_2*p^k-1...$
$C(_{m}^{n})=C(_{b_1}^{a_1})*...$
大概的意思就是转化成$p$进制下的每一位做组合数,那么我们就可以预处理阶乘以及它的逆元进行计算。
所以说Lucas只能跑过$10^5$当质数很大的时候就放弃。
如果不是质数,那么可以分解质因数,每一个因数做一次Lucas,然后用CRT合并。
以前留下的大坑终于补完了,EXGCD和CRT终于明白了(真是弱(。・・)ノ)
突然发现namespace写起来挺好用的,以后挂链就用它了
注意 1.n<m时候需要判定,因为%意义下会有小的情况产生。
2.随时取模
#include <map>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define mp make_pair namespace Subtask1{
const int p=1000003;
ll fac[p],inv[p];
void Shaker()
{
int i;
for (fac[0]=1,i=1;i<p;++i)
fac[i]=fac[i-1]*i%p;
for (inv[1]=1,i=2;i<p;++i)
inv[i]=(p-p/i)*inv[p%i]%p;
for (inv[0]=1,i=1;i<p;++i)
(inv[i]*=inv[i-1])%=p;
}
ll C(ll n,ll m)
{
if (n<m) return 0;
if (n<p&&m<p) return fac[n]*inv[m]*inv[n-m]%p;
return C(n%p,m%p)*C(n/p,m/p)%p;
}
} namespace Subtask2{
const int p=1019663265;
int pri[]={3,5,6793,10007};
ll fac[4][10007],inv[4][10007],k1=339887755,k2=407865306,k3=673070820,k4=618502650;
void Shaker()
{
int i,j;
for (j=0;j<4;++j)
{
int np=pri[j];
for (fac[j][0]=1,i=1;i<np;++i)
fac[j][i]=fac[j][i-1]*i%np;
for (inv[j][1]=1,i=2;i<np;++i)
inv[j][i]=(np-np/i)*inv[j][np%i]%np;
for (inv[j][0]=1,i=1;i<np;++i)
(inv[j][i]*=inv[j][i-1])%=np;
}
}
ll C(ll n,ll m,int j)
{
int np=pri[j];
if (n<m) return 0;
if (n<np&&m<np) return fac[j][n]*inv[j][m]*inv[j][n-m]%np;
return C(n%np,m%np,j)*C(n/np,m/np,j)%np;
}
ll C(ll n,ll m)
{
ll r1=C(n,m,0),r2=C(n,m,1),r3=C(n,m,2),r4=C(n,m,3);
return (r1*k1+r2*k2+r3*k3+r4*k4)%p;
}
} struct Point{
ll x,y;
void read(){scanf("%lld%lld",&x,&y);}
}points[220]; bool cmp(Point a,Point b)
{return a.x==b.x?a.y<b.y:a.x<b.x;} ll ksm(ll a,ll b,ll p)
{
ll ret=1;
for (;b;b>>=1,(a*=a)%=p)
if (b&1) (ret*=a)%=p;
return ret;
} ll f[220],t,n,m; void solve1()
{
using namespace Subtask1;
Shaker();
F(i,1,t)
{
f[i]=C(points[i].x+points[i].y,points[i].x);
F(j,1,i-1) if (points[j].y<=points[i].y)
{
(f[i]-=f[j]*C(points[i].x-points[j].x+points[i].y-points[j].y,points[i].x-points[j].x)%p);
f[i]+=p; f[t]%=p;
}
}
} void solve2()
{
using namespace Subtask2;
Shaker();
F(i,1,t)
{
f[i]=C(points[i].x+points[i].y,points[i].x);
F(j,1,i-1) if (points[j].y<=points[i].y)
{
(f[i]-=f[j]*C(points[i].x-points[j].x+points[i].y-points[j].y,points[i].x-points[j].x)%p);
f[i]%=p;f[i]+=p; f[t]%=p;
}
}
} void Finout()
{
freopen("in.txt","r",stdin);
freopen("wa.txt","w",stdout);
} int main()
{
ll p;
scanf("%lld%lld%lld%lld",&n,&m,&t,&p);
F(i,1,t) points[i].read();++t;points[t].x=n;points[t].y=m;
sort(points+1,points+t+1,cmp);
if (p==1000003) solve1(); else solve2();
cout<<f[t]<<endl;
}
BZOJ 3782 上学路线 ——动态规划 Lucas定理 中国剩余定理的更多相关文章
- BZOJ 3782: 上学路线 [Lucas定理 DP]
3782: 上学路线 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 192 Solved: 75[Submit][Status][Discuss] ...
- 【bzoj3782】上学路线 dp+容斥原理+Lucas定理+中国剩余定理
题目描述 小C所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M).小C家住在西南角,学校在东北角.现在有T个路口进行施工,小C不能通过这些路口.小C喜欢走最短的路径到达目的 ...
- bzoj 3782 上学路线 卢卡斯定理 容斥 中国剩余定理 dp
LINK:上学路线 从(0,0)走到(n,m)每次只能向上或者向右走 有K个点不能走求方案数,对P取模. \(1\leq N,M\leq 10^10 0\leq T\leq 200\) p=10000 ...
- 卢卡斯定理&&中国剩余定理
卢卡斯定理(模数较小,且是质数) 式子C(m,n)=C(m/p,n/p)*C(m%p,n%p)%p 至于证明(我也不会QAQ,只要记住公式也该就好了). 同时卢卡斯定理一般用于组合数取模上 1.首先当 ...
- BZOJ 3782 上学路线
首先这个题需要dp.dp[i]=C(x[i]+y[i],x[i])-Σdp[j]*C(x[i]-x[j]+y[i]-y[j],x[i]-x[j])(x[i]>=x[j],y[i]>=y[j ...
- 【bzoj1951】[Sdoi2010]古代猪文 费马小定理+Lucas定理+中国剩余定理
题目描述 求 $g^{\sum\limits_{k|n}C_{n}^{\frac nk}}\mod 999911659$ 输入 有且仅有一行:两个数N.G,用一个空格分开. 输出 有且仅有一行:一个 ...
- Ceizenpok’s formula Gym - 100633J 扩展Lucas定理 + 中国剩余定理
http://codeforces.com/gym/100633/problem/J 其实这个解法不难学的,不需要太多的数学.但是证明的话,我可能给不了严格的证明.可以看看这篇文章 http://ww ...
- hdu 5446 Unknown Treasure Lucas定理+中国剩余定理
Unknown Treasure Time Limit: 1500/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Other ...
- 【题解】P2480 [SDOI2010]古代猪文 - 卢卡斯定理 - 中国剩余定理
P2480 [SDOI2010]古代猪文 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 猪王国的文明源远流长,博大精 ...
随机推荐
- 纯css实现div三列等高布局的最简单方法简化版/也可以多列
使用正padding和负margin对冲实现多列布局方法 这种方法很简单,就是在所有列中使用正的上.下padding和负的上.下margin,并在所有列外面加上一个容器,并设置overflow:hid ...
- cacti图形字符乱码
环境:最小化centos+cacti 问题:图形监控界面字符全部乱码,如下图 解决方法:从windows下面拷贝一个ttf文件到/usr/share/fonts下面,刷新页面,字符就正常显示了.
- 后台安装 SQL Server 无人值守 安装
(开头闲淡)项目需要必须安装SQL的,查了很久,断断续续用了各种方法,今天终于用了正确的姿(xia)势(mo)弄成了. 最开始用的方法是调用Win的API模拟鼠标操作安装的,嗯,虽然勉强可以,就是有些 ...
- UVA 11400 Lighting System Design 照明系统设计
首先是一个贪心,一种灯泡要么全都换,要么全都不换. 先排序,定义状态d[i]为前面i种灯泡的最小花费,状态转移就是从d[j],j<i,加上 i前面的j+1到i-1种灯泡换成i的花费. 下标排序玩 ...
- Android(java)学习笔记151:Android中操作JSON数据(Json和Jsonarray)
1.Json 和 Xml JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式.它基于ECMAScript的一个子集. JSON采用完全独立于语言的 ...
- 剑指offer——把字符串转换成整数(c++)
题目描述请你写一个函数StrToInt,实现把字符串转换成整数这个功能.当然,不能使用atoi或者其他类似的库函数. 示例 1:输入: " -42"输出: -42解释: 第一个非空 ...
- winform中让显示的图片覆盖到父窗体保持父窗体的不可选中的状态,且任务栏中不会显示子窗体的任务选项
要求:为父窗体添加一个类似于加载等待的功能,当窗体点击备份时弹出且覆盖掉窗体 问题一产生:当为弹窗添加控件时,form.show();导致窗体卡死,控件变得透明化; 问题一分析:当窗体show();之 ...
- OpenCascade: 获取边的端点
FirstV = TopExp::FirstVertex(aEdge1); LastV = TopExp::LastVertex(aEdge1);
- CSS BEM 命名规范简介
[前言] BEM 是一个简单又非常有用的命名约定.让你的前端代码更容易阅读和理解,更容易协作,更容易控制,更加健壮和明确,而且更加严密.这篇文章主要介绍了CSS BEM 命名规范简介(推荐)的相关资料 ...
- Linux网络管理及基础设置
一.网络管理 1 临时配置网络(ip,网关,dns) 用ifconfig命令设定网卡的IP地址: ens33网卡的IP地址为192.168.16.154, ifconfig ens33 192.168 ...