Problem Description

给出组合数C(n,m), 表示从n个元素中选出m个元素的方案数。例如C(5,2) = 10, C(4,2) = 6.可是当n,m比较大的时候,C(n,m)很大!于是xiaobo希望你输出 C(n,m) mod p的值!

思路:水题,练一下lucas

#include<iostream>
#include<cstdio>
#include <math.h>
#include<algorithm>
#include<string.h>
#include<queue>
#define MOD 1000003
#define maxn 2009
#define LL long long
using namespace std;
LL mpow(LL a,LL n,LL p)
{
        if(n==0)return 1;
        if(n==1)return a%p;
        if(n&1)return (a*mpow(a,n-1,p))%p;
        else
        {
                LL u=mpow(a,n>>1,p)%p;
                return (u*u)%p;
        }
}
LL C(LL n,LL m,LL p)
{
        if(m==0)return 1;
        if(m>n-m)m=n-m;
        LL up=1,down=1;
        for(int i=1;i<=m;i++){
                up=(up*(n-i+1))%p;
                down=(down*i)%p;
        }
        return up*mpow(down,p-2,p)%p;
}
long long lucas(long long n,long long m,long long p)
{
        if(m==0)return 1;
        return C(n%p,m%p,p)*lucas(n/p,m/p,p);
}
int main()
{
        long long m,n,p;
        int t;
        scanf("%d",&t);
        while(t--)
        {
                scanf("%I64d%I64d%I64d",&n,&m,&p);
                printf("%I64d\n",lucas(n,m,p));
        }
        return 0;
}

FZU 2020 :组合 【lucas】的更多相关文章

  1. FZU 2020 组合 (Lucas定理)

    题意:中文题. 析:直接运用Lucas定理即可.但是FZU好奇怪啊,我开个常数都CE,弄的工CE了十几次,在vj上还不显示. 代码如下: #pragma comment(linker, "/ ...

  2. FZU 2020 组合

    组合数求模要用逆元,用到了扩展的欧几里得算法. #include<cstdio> int mod; typedef long long LL; void gcd(LL a,LL b,LL ...

  3. lucas定理 FOJ 2020 组合

     Problem 2020 组合 Accept: 886    Submit: 2084Time Limit: 1000 mSec    Memory Limit : 32768 KB Problem ...

  4. Problem 2020 组合(FOJ)

    Problem 2020 组合 Accept: 714    Submit: 1724Time Limit: 1000 mSec    Memory Limit : 32768 KB  Problem ...

  5. 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas

    [题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...

  6. 【Lucas组合数定理】组合-FZU 2020

    组合 FZU-2020 题目描述 给出组合数C(n,m), 表示从n个元素中选出m个元素的方案数.例如C(5,2) = 10, C(4,2) = 6.可是当n,m比较大的时候,C(n,m)很大!于是x ...

  7. 组合 Lucas定理

    组合 Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u [Submit]   [Go Ba ...

  8. 快速求排列组合 lucas定理

    对于C(n, m) mod p.这里的n,m,p(p为素数)都很大的情况. 就不能再用C(n, m) = C(n - 1,m) + C(n - 1, m - 1)的公式递推了. 一般lucas定理的p ...

  9. 排列组合lucas模板

    //codeforces 559C|51nod1486 Gerald and Giant Chess(组合数学+逆元) #include <bits/stdc++.h> using nam ...

随机推荐

  1. MySQL主服务配置文件

    [mysql]port=3306socket=/var/lib/mysql/mysql.sockdefault-character-set = utf8mb4 [mysqld]server-id = ...

  2. How to install Eclipse?

    http://askubuntu.com/questions/26632/how-to-install-eclipse How to install Eclipse? up vote113down v ...

  3. Luogu P4593 [TJOI2018]教科书般的亵渎

    亵渎终于离开标准了,然而铺场快攻也变少了 给一个大力枚举(无任何性质)+艹出自然数幂和的方法,但是复杂度极限是\(O(k^4)\)的,不过跑的好快233 首先简单数学分析可以得出\(k=m+1\),因 ...

  4. k8s 如何 Failover?

    上一节我们有 3 个 nginx 副本分别运行在 k8s-node1 和 k8s-node2 上.现在模拟 k8s-node2 故障,关闭该节点. 等待一段时间,Kubernetes 会检查到 k8s ...

  5. 用python编写九九乘法表

    for i in range(1,10): for j in range(1,10): if j >i: print(end='') else: print(j,'*',i,'=',i*j,en ...

  6. 数据库:SQL Server自增长列的编号

    SQL Server表中的自动编号ID重新开始排列 说法一: 有两种方法: 方法1: truncate table 你的表名 --这样不但将数据删除,而且可以重新置位identity属性的字段. 方法 ...

  7. WINDOWS-API:取得当前用户账户名-GetUserName

    bool TFormMain::GetCurrentProcessUser(AnsiString& strUserName) { bool bRet = false; //strUserNam ...

  8. ArcMap所有Command GUID

    The information in this topic is useful if you're trying to programmatically find a built-in command ...

  9. Spring框架context的注解管理方法之二 使用注解注入基本类型和对象属性 注解annotation和配置文件混合使用(半注解)

    首先还是xml的配置文件 <?xml version="1.0" encoding="UTF-8"?> <beans xmlns=" ...

  10. js事件(事件冒泡与事件捕获)

    事件冒泡和事件捕获分别由微软和网景公司提出,这两个概念都是为了解决页面中事件流(事件发生顺序)的问题. <div id='aa' click='po'> <p id='bb' cli ...