数组开小导致TTTTTLE……

是分数规划,设sm为所有格子价值和,二分出mid之后,用最小割来判断,也就是判断sm-dinic()>=0

这个最小割比较像最大权闭合子图,建图是s像所有点连流量为格子价值的边(相当于最大权闭合子图中的正权点),然后考虑边缘,两个相邻的格子,如果一个选一个不选那么中间这条边就有负的贡献,所以两个相邻的格子之间连两条边权为mid*边权的边,注意是两条,要互相连一下,然后所有边界上的点像t连边权为mid*边界边权的边,相当于假装外面还有一层点全标为t,然后跑最小割判断即可

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int N=105;
const double eps=1e-6,inf=1e9;
int n,m,h[N*N],cnt,s,t,id[N][N],tot,le[N*N];
double a[N][N],b[N][N],c[N][N],sm;
struct qwe
{
int ne,to;
double va;
}e[N*N*N];
void add(int u,int v,double w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
void ins(int u,int v,double w)
{
add(u,v,w);
add(v,u,0);
}
bool bfs()
{
queue<int>q;
memset(le,0,sizeof(le));
le[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>eps&&!le[e[i].to])
{
le[e[i].to]=le[u]+1;
q.push(e[i].to);
}
}
return le[t];
}
double dfs(int u,double f)
{
if(u==t||!f)
return f;
double us=0;
for(int i=h[u];i&&us<f;i=e[i].ne)
if(e[i].va>eps&&le[e[i].to]==le[u]+1)
{
double t=dfs(e[i].to,min(e[i].va,f-us));
e[i].va-=t;
e[i^1].va+=t;
us+=t;
}
if(us<eps)
le[u]=0;
return us;
}
int dinic()
{
double re=0;
while(bfs())
re+=dfs(s,inf);
return re;
}
bool ok(double w)
{
memset(h,0,sizeof(h));
cnt=1,s=0,t=n*m+1;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
ins(s,id[i][j],a[i][j]);
for(int j=1;j<=m;j++)
ins(id[1][j],t,w*b[0][j]),ins(id[n][j],t,w*b[n][j]);
for(int i=1;i<=n;i++)
ins(id[i][1],t,w*c[i][0]),ins(id[i][m],t,w*c[i][m]);
for(int i=1;i<n;i++)
for(int j=1;j<=m;j++)
add(id[i][j],id[i+1][j],w*b[i][j]),add(id[i+1][j],id[i][j],w*b[i][j]);
for(int i=1;i<=n;i++)
for(int j=1;j<m;j++)
add(id[i][j],id[i][j+1],w*c[i][j]),add(id[i][j+1],id[i][j],w*c[i][j]);
return sm-dinic()>eps;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%lf",&a[i][j]),id[i][j]=++tot,sm+=a[i][j];
for(int i=0;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%lf",&b[i][j]);
for(int i=1;i<=n;i++)
for(int j=0;j<=m;j++)
scanf("%lf",&c[i][j]);
double l=0,r=n*m*100,ans=0;
while(r-l>1e-5)
{
double mid=(l+r)/2;
if(ok(mid))
l=mid,ans=mid;
else
r=mid;
}
printf("%.3f\n",ans);
return 0;
}

bzoj 3232: 圈地游戏【分数规划+最小割】的更多相关文章

  1. BZOJ 3232: 圈地游戏 分数规划+判负环

    3232: 圈地游戏 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 966  Solved: 466[Submit][Status][Discuss] ...

  2. 【BZOJ3232】圈地游戏 分数规划+最小割

    [BZOJ3232]圈地游戏 Description DZY家的后院有一块地,由N行M列的方格组成,格子内种的菜有一定的价值,并且每一条单位长度的格线有一定的费用. DZY喜欢在地里散步.他总是从任意 ...

  3. bzoj 3232: 圈地游戏

    bzoj 3232: 圈地游戏 01分数规划,就是你要最大化\(\frac{\sum A}{\sum B}\),就二分这个值,\(\frac{\sum A}{\sum B} \geq mid\) \( ...

  4. bzoj 3232 圈地游戏 —— 01分数规划+最小割建图(最大权闭合子图)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 心烦意乱的时候调这道题真是...越调越气,就这样过了一晚上... 今天再认真看看,找出 ...

  5. bzoj 3232: 圈地游戏 01分数规划

    题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=3232 题解: 首先我们看到这道题让我们最优化一个分式. 所以我们应该自然而然地想到01分 ...

  6. bzoj 3232 圈地游戏——0/1分数规划(或网络流)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 当然是0/1分数规划.但加的东西和减的东西不在一起,怎么办? 考虑把它们合在一起.因为 ...

  7. zoj 2676 Network Wars 0-1分数规划+最小割

    题目详解出自 论文 Amber-最小割模型在信息学竞赛中的应用 题目大意: 给出一个带权无向图 G = (V,E), 每条边 e属于E都有一个权值We,求一个割边集C,使得该割边集的平均边权最小,即最 ...

  8. 【洛谷P2494】 [SDOI2011]保密(分数规划+最小割)

    洛谷 题意: 题意好绕好绕...不想写了. 思路: 首先类似于分数规划做法,二分答案得到到每个点的最小危险度. 然后就是在一个二分图中,两边撤掉最少的点(相应代价为上面算出的危险度)及相应边,使得中间 ...

  9. 洛谷2494 [SDOI2011]保密 (分数规划+最小割)

    自闭一早上 分数规划竟然还能被卡精度 首先假设我们已经知道了到每个出入口的时间(代价) 那我们应该怎么算最小的和呢? 一个比较巧妙的想法是,由于题目规定的是二分图. 我们不妨通过最小割的形式. 表示这 ...

随机推荐

  1. Android开发之入口Activity

    Android开发之入口Activity Adnroid App是怎样确定入口Activity的? 难道就由于class的类名叫MainActivity,布局文件叫activity_main.xml? ...

  2. BZOJ 3732 Network 最小瓶颈路

    题目大意:给出一个无向边,非常多询问,问x,y两地之间的最长路最短是多少. 思路:乍一看好像是二分啊. 的确这个题二分能够做.可是时间会慢非常多,有的题直接就T掉(NOIP2013货车运输). 事实上 ...

  3. Intel的东进与ARM的西征(5)--智慧的大窗口,我们都在画里面

    http://www.36kr.com/p/200168.html 繁华又算得了什么,不过是星尘的崩碎,那一抹青青的灰.公元 79 年,意大利维苏威火山喷发,已然兴盛了 600 年的庞贝古城被完全湮没 ...

  4. 6. IO复用:select 和 poll

    select #include <sys/select.h> #include <sys/time.h> int select(int maxfdp1, fd_set *rea ...

  5. vue 安装与起步

    vue安装: 1.官网下载vue,在script标签里引用(去下载) 2.使用CDN(建议下载到本地,不推荐这种方法): BootCDN:https://cdn.bootcss.com/vue/2.2 ...

  6. Arcgis Engine(ae)接口详解(8):临时元素(element)

    //主地图的地图(map)对象 IMap map = null; IActiveView activeView = null; //IGraphicsContainer用于操作临时元素,可以通过map ...

  7. Robotium结果的收集和失败重跑

    引用自 http://www.robotium.cn/archives/author/zered 测试用例: testsuite管理测试用例 测试结果的输出与收集? InstrumentationTe ...

  8. MFC中CAsyncSocket和CSocket

    原文链接:https://blog.csdn.net/libaineu2004/article/details/40395917 摘要部分重点: 1.CAsyncSocket类逐个封装了WinSock ...

  9. 主线程 view

    参考https://blog.csdn.net/u011001142/article/details/50912358

  10. 解决virtualbox安装增强工具失败的问题

    virtualbox有个增强工具,安装之后用户体验是非常爽的.但是有些时候在安装增强工具会遇到一些小问题,无非是没有安装gcc,make之类的编译工具或是需要安装kernel*.而我遇到的问题在做了这 ...