D. Dreamoon and Sets
 

Dreamoon likes to play with sets, integers and  is defined as the largest positive integer that divides both a and b.

Let S be a set of exactly four distinct integers greater than 0. Define S to be of rank k if and only if for all pairs of distinct elements sisjfrom S.

Given k and n, Dreamoon wants to make up n sets of rank k using integers from 1 to m such that no integer is used in two different sets (of course you can leave some integers without use). Calculate the minimum m that makes it possible and print one possible solution.

Input

The single line of the input contains two space separated integers nk (1 ≤ n ≤ 10 000, 1 ≤ k ≤ 100).

Output

On the first line print a single integer — the minimal possible m.

On each of the next n lines print four space separated integers representing the i-th set.

Neither the order of the sets nor the order of integers within a set is important. If there are multiple possible solutions with minimal m, print any one of them.

Sample test(s)
input
1 1
output
5
1 2 3 5
Note

For the first example it's easy to see that set {1, 2, 3, 4} isn't a valid set of rank 1 since .

题意:求出n个集合均为4个元素,且每个集合内任意两两,元素的最大公约数为k,集合不允许有交集,当n*4个元素最大值最小时,输出所有n个集合,

题解:我是暴力水过去的,正解是:

两两元素之间是互质的,然后为了满足元素最大值最小,

在除掉k后,任意集合内肯定是由3个奇数,1个偶数组成,

因为若少一个奇数,就会有至少一对数不互质,

若多一个奇数,元素最大值就会变大。

所以,从1开始构建所有元素集合即可。

#include<iostream>
#include<map>
#include<string>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
int main()
{
int n,k;
cin>>n>>k;
cout<<(*n-)*k<<endl;
while(n--)
{
cout<<(*n+)*k<<" "<<(*n+)*k<<" "<<(*n+)*k<<" "<<(*n+)*k<<endl;
}
}

正解代码

///
#include<bits/stdc++.h>
using namespace std ;
typedef long long ll;
#define mem(a) memset(a,0,sizeof(a))
#define meminf(a) memset(a,127,sizeof(a));
#define TS printf("111111\n");
#define FOR(i,a,b) for( int i=a;i<=b;i++)
#define FORJ(i,a,b) for(int i=a;i>=b;i--)
#define READ(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define inf 100000000
inline ll read()
{
ll x=,f=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-')f=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*f;
}
//****************************************
///****************************************************************
/// Miller_Rabin 算法进行素数测试
///速度快,而且可以判断 <2^63的数
//****************************************************************
const int S=;///随机算法判定次数,S越大,判错概率越小 ///计算 (a*b)%c. a,b都是long long的数,直接相乘可能溢出的
/// a,b,c <2^63
long long mult_mod(long long a,long long b,long long c)
{
a%=c;
b%=c;
long long ret=;
while(b)
{
if(b&){ret+=a;ret%=c;}
a<<=;
if(a>=c)a%=c;
b>>=;
}
return ret;
} ///计算 x^n %c
long long pow_mod(long long x,long long n,long long mod)//x^n%c
{
if(n==)return x%mod;
x%=mod;
long long tmp=x;
long long ret=;
while(n)
{
if(n&) ret=mult_mod(ret,tmp,mod);
tmp=mult_mod(tmp,tmp,mod);
n>>=;
}
return ret;
} ///以a为基,n-1=x*2^t a^(n-1)=1(mod n) 验证n是不是合数
///一定是合数返回true,不一定返回false
bool check(long long a,long long n,long long x,long long t)
{
long long ret=pow_mod(a,x,n);
long long last=ret;
for(int i=;i<=t;i++)
{
ret=mult_mod(ret,ret,n);
if(ret==&&last!=&&last!=n-) return true;//合数
last=ret;
}
if(ret!=) return true;
return false;
} /// Miller_Rabin()算法素数判定
///是素数返回true.(可能是伪素数,但概率极小)
///合数返回false; bool Miller_Rabin(long long n)
{
if(n<)return false;
if(n==)return true;
if((n&)==) return false;//偶数
long long x=n-;
long long t=;
while((x&)==){x>>=;t++;}
for(int i=;i<S;i++)
{
long long a=rand()%(n-)+;///rand()需要stdlib.h头文件
if(check(a,n,x,t))
return false;//合数
}
return true;
} #define maxn 100000+5
int a[maxn],n,m;
vector<int >G;
int gcd(int M,int N )
{
int Rem;
while( N > )
{
Rem = M % N;
M = N;
N = Rem;
}
return M;
}
int main(){
n=read(),m=read();
int ans[maxn];
int k=;
int tmp=;
G.clear();
for(int i=;i<=n;i++){
while(G.size()!=){
bool flag=;
for(int j=;j<G.size();j++){
if(gcd(G[j],m*tmp)!=m)flag=;
}
if(flag) G.push_back(tmp*m);
tmp++;
}
for(int j=;j<G.size();j++)
a[++k]=G[j];
G.clear();
if(!Miller_Rabin(tmp))tmp++;
}
cout<<a[k]<<endl;
for(int i=;i<=k;i+=){
cout<<a[i]<<" "<<a[i+]<<" "<<a[i+]<<" "<<a[i+]<<endl;
} return ;
}

暴力代码

Codeforces Round #272 (Div. 2) D.Dreamoon and Sets 找规律的更多相关文章

  1. Codeforces Round #272 (Div. 2) D. Dreamoon and Sets 构造

    D. Dreamoon and Sets 题目连接: http://www.codeforces.com/contest/476/problem/D Description Dreamoon like ...

  2. Codeforces Round #272 (Div. 2) D. Dreamoon and Sets (思维 数学 规律)

    题目链接 题意: 1-m中,四个数凑成一组,满足任意2个数的gcd=k,求一个最小的m使得凑成n组解.并输出 分析: 直接粘一下两个很有意思的分析.. 分析1: 那我们就弄成每组数字都互质,然后全体乘 ...

  3. Codeforces Round #272 (Div. 2) E. Dreamoon and Strings 动态规划

    E. Dreamoon and Strings 题目连接: http://www.codeforces.com/contest/476/problem/E Description Dreamoon h ...

  4. Codeforces Round #272 (Div. 2) B. Dreamoon and WiFi dp

    B. Dreamoon and WiFi 题目连接: http://www.codeforces.com/contest/476/problem/B Description Dreamoon is s ...

  5. Codeforces Round #272 (Div. 2) A. Dreamoon and Stairs 水题

    A. Dreamoon and Stairs 题目连接: http://www.codeforces.com/contest/476/problem/A Description Dreamoon wa ...

  6. Codeforces Round #272 (Div. 2) E. Dreamoon and Strings dp

    题目链接: http://www.codeforces.com/contest/476/problem/E E. Dreamoon and Strings time limit per test 1 ...

  7. Codeforces Round #272 (Div. 1) A. Dreamoon and Sums(数论)

    题目链接 Dreamoon loves summing up something for no reason. One day he obtains two integers a and b occa ...

  8. Codeforces Round #272 (Div. 2)-C. Dreamoon and Sums

    http://codeforces.com/contest/476/problem/C C. Dreamoon and Sums time limit per test 1.5 seconds mem ...

  9. Codeforces Round #272 (Div. 2)-B. Dreamoon and WiFi

    http://codeforces.com/contest/476/problem/B B. Dreamoon and WiFi time limit per test 1 second memory ...

随机推荐

  1. Anniversary Cake

    Anniversary Cake Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 15704   Accepted: 5123 ...

  2. Linux下ifconfig不显示ip地址问题总结

    问题一:ifconfig之后只显示lo,没有看到eth0 ? eth0设置不正确,导致无法正常启动,修改eth0配置文件就好 ubuntu 12.04的网络设置文件是/etc/network/inte ...

  3. Vue指令3:v-for

    列表渲染 我们用 v-for 指令根据一组数组的选项列表进行渲染.v-for 指令需要使用item in items 形式的特殊语法,items 是源数据数组并且 item 是数组元素迭代的别名. & ...

  4. 如何在linux使用nmap端口扫描工具扫描网段内开放的端口

    在另一个linux主机上,使用nmap命令即可 ,比如 我在1.1.1.2上开放了端口1111 -A -j ACCEPT 在1.1.1.1上执行 即可查到

  5. CAD在一个点构造选择集(网页版)

    主要用到函数说明: IMxDrawSelectionSet::SelectAtPoint 在一个点构造选择集.详细说明如下: 参数 说明 [in] IMxDrawPoint* point 点坐标 [i ...

  6. 关于iframe与$.load()哪个更好

    iframe与$.load()哪个更好       iframe可以直接加载页面,但是要付出降低搜索引擎搜索效率的代价,它引入静态文件的方式是完全独立的,简单意思就是,在页面一(父级页面)用ifram ...

  7. 【Redis】三、Redis安装及简单示例

    (四)Redis安装及使用   Redis的安装比较简单,仍然和大多数的Apache开源软件一样,只需要下载,解压,配置环境变量即可.具体安装过程参考:菜鸟教程Redis安装.   安装完成后,通过r ...

  8. layer弹出层无法关闭问题

    parent.layer.closeAll();如果关闭指定弹出层,获取对应弹出层的索引,进行关闭

  9. 【实验级】Docker-Compose搭建单服务器ELK伪集群

    本文说明 由于最近在搭ELK的日志系统,为了演示方案搭了个单台服务器的日志系统,就是前一篇文章中所记,其实这些笔记已经整理好久了,一直在解决各种问题就没有发出来.在演示过程中我提到了两个方案,其中之一 ...

  10. 洛谷——P1229 遍历问题

    P1229 遍历问题 题目描述 我们都很熟悉二叉树的前序.中序.后序遍历,在数据结构中常提出这样的问题:已知一棵二叉树的前序和中序遍历,求它的后序遍历,相应的,已知一棵二叉树的后序遍历和中序遍历序列你 ...