2186: [Sdoi2008]沙拉公主的困惑

Time Limit: 10 Sec  Memory Limit: 259 MB

Submit: 2363  Solved: 779

[

id=2186" style="color:blue; text-decoration:none">Submit][

id=2186" style="color:blue; text-decoration:none">Status][Discuss]

Description

  大富翁国由于通货膨胀,以及假钞泛滥。政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,可是,政府仅仅发行编号与M!互质的钞票。

房地产第一大户沙拉公主决定预測一下大富翁国如今全部真钞票的数量。

如今,请你帮助沙拉公主解决问题。由于可能张数很大,你仅仅需计算出对R取模后的答案就可以。R是一个质数。

Input

第一行为两个整数T,R。R<=10^9+10。T<=10000,表示该组中測试数据数目。R为模后面T行,每行一对整数N,M,见题目描写叙述 m<=n

Output

共T行。对于每一对N,M。输出1至N。中与M!素养的数的数量对R取模后的值

Sample Input

1 11

4 2


Sample Output

1



数据范围:

对于100%的数据,1 < = N , M < = 10000000

HINT

Source

欧拉函数+线性筛法+
乘法逆元

数论题的做法简直不能再6,感觉自己智商严重不够用…

首先答案为phi(m!)*n!/m!%p。由于全部小于m!且与m!互质的数加上m!的整数倍都与m!互质,而其它数都不与m!互质。(正确性显然)

那么这个式子怎么求呢???

我们能够分成两部分来求,phi(m!)/mi和n!。

n!%p是非常easy预处理的。这里的主要问题是怎样求phi(m!)/m!。

令f(m)=phi(m!)/m!,依据phi(x)=x*(p1-1)/p1*(p2-1)/p2*…

可得f(m)=(p1-1)/p1*(p2-1)/p2*…当中pi为不大于m的质数

所以对于f(i),假设i是质数f(i)=f(i-1)*(i-1)/m。否则f(i)=f(i-1)。

依据以上关系式能够预处理f(1)-f(10^7)。

每次询问仅仅须要输出f(m)*n!%p就可以。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#define F(i,j,n) for(int i=j;i<=n;i++)
#define D(i,j,n) for(int i=j;i>=n;i--)
#define ll long long
#define maxn 10000005
using namespace std;
int n,m,p,t;
ll fac[maxn],ans[maxn];
bool f[maxn];
inline int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline void exgcd(int a,int b,int &x,int &y)
{
if (!b){x=1;y=0;return;}
exgcd(b,a%b,x,y);
int t=x;x=y;y=t-a/b*x;
}
inline int getinv(int a)
{
int x=0,y=0;
exgcd(a,p,x,y);
return (x%p+p)%p;
}
int main()
{
t=read();p=read();
int x=10000000;
fac[1]=1;
F(i,2,x) fac[i]=fac[i-1]*i%p;
ans[1]=1;
F(i,2,x)
{
if (!f[i])
{
ans[i]=ans[i-1]*(i-1)%p*getinv(i)%p;
F(j,2,x/i) f[i*j]=true;
}
else ans[i]=ans[i-1];
}
while (t--)
{
n=read();m=read();
printf("%lld\n",ans[m]*fac[n]%p);
}
}

bzoj2186【SDOI2008】沙拉公主的困惑的更多相关文章

  1. BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 6103  Solved: 2060[Submit][S ...

  2. BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 5003  Solved: 1725 [Submit] ...

  3. [bzoj2186][Sdoi2008]沙拉公主的困惑_数论

    沙拉公主的困惑 bzoj-2186 Sdoi-2008 题目大意:求N!中与M!互质的数的个数. 注释:$1\le N,M\le 10^7$. 想法:显然是求$\phi(M!)$.这东西其实只需要将数 ...

  4. BZOJ2186: [Sdoi2008]沙拉公主的困惑

    传送门 常规数论题,利用欧拉函数的相关性质. 题求$[1,N!]$中与$M!$互质的数的个数,且$M \leq N$.然后根据欧拉函数的相关性质很容易得出这道题的答案为$\frac{\phi (M!) ...

  5. BZOJ2186 SDOI2008沙拉公主的困惑(数论)

    由于n!是m!的倍数,而对于每个与m!互质且小于m!的数x,x+m!.x+2*m!……也与其互质,所以答案即为(n!/m!)*φ(m!). φ(m!)=m!*∏(1-1/pi).其中的pi即为1~m中 ...

  6. [bzoj2186][Sdoi2008]沙拉公主的困惑——数论

    题目大意 求 \[\sum_{i = 1}^{N!} [gcd(i, M!) = 1]\] 题解 显然,题目就是求 \[N!(1-\frac{1}{p_1})(1-\frac{1}{p_2})...\ ...

  7. 【数论】【欧拉函数】【筛法求素数】【乘法逆元】【快速幂取模】bzoj2186 [Sdoi2008]沙拉公主的困惑

    http://www.cnblogs.com/BLADEVIL/p/3490321.html http://www.cnblogs.com/zyfzyf/p/3997986.html 翻了翻题解,这两 ...

  8. 【BZOJ2186】[Sdoi2008]沙拉公主的困惑 线性筛素数

    [BZOJ2186][Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M! ...

  9. 【bzoj2186】: [Sdoi2008]沙拉公主的困惑 数论-欧拉函数

    [bzoj2186]: [Sdoi2008]沙拉公主的困惑 考虑当 gcd(a,b)=1 则 gcd(nb+a,b)=1 所以[1,N!]与M!互质的个数就是 筛出[1,M]所有的素数p[i] 以及逆 ...

  10. 【bzoj2186】[Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3303  Solved: 1129[Submit][S ...

随机推荐

  1. .Net实战之反射相关类之间的人体经络关系

    --1.类的部分组成成员 --2.巧记成员之间的关系 [MyTable("T_UserInfo")] public class UserInfo : Person, UserSer ...

  2. [ Nowcoder Contest 167 #D ] 重蹈覆辙

    \(\\\) \(Description\) 用\(1\times 2\)的矩形和面积为\(3\)的\(L\)形去覆盖一个\(2\times N\) 的矩形,求方案数对\(10^4+7\)取模后的结果 ...

  3. opencv识别验证码的教程和资料

    简书教程:https://www.jianshu.com/p/41127bf90ca9 博客园教程(较详细):https://www.cnblogs.com/qqandfqr/p/7866650.ht ...

  4. 清除浮动(float)的影响

    浮动会导致父元素塌陷如图: 解决办法: 父元素overflow:hidden,如图 末尾插入子元素clear,如图 为甚么,父元素overflow:hidden会解决塌陷问题? 来自知乎貘吃馍香的回答 ...

  5. MySQL——基本安装与使用

    基本安装 下载地址:https://dev.mysql.com/downloads/mysql/ 选择解压版本:mysql-5.7.21-winx64.zip 以管理员身份打开cmd(除了安装服务不要 ...

  6. dutacm.club_1094_等差区间_(线段树)(RMQ算法)

    1094: 等差区间 Time Limit:5000/3000 MS (Java/Others)   Memory Limit:163840/131072 KB (Java/Others)Total ...

  7. HDU_1207_汉诺塔2

    汉诺塔II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  8. java 动态代理 和动态编程

    概述 代理分两种技术,一种是jdk代理(机制就是反射,只对接口操作),一种就是字节码操作技术.前者不能算技术,后者算是新的技术.未来将有大的动作或者较为广泛的应用和变革,它可以实现代码自我的编码(人工 ...

  9. Jmeter在Windows上分布式压测遇到的坑

    1.五星坑:远程启动测试,响应数据为空. controller运行jmeter脚本后,GUI无性能数据返回. agent的jmeter server显示连接后立即结束.看似执行实则响应数据为空. 出现 ...

  10. Django框架 之基础入门

    django是一款MVT的框架 一.基本过程 1.创建项目:django-admin startproject 项目名称 2.编写配置文件settings.py(数据库配置.时区.后台管理中英文等) ...