2186: [Sdoi2008]沙拉公主的困惑

Time Limit: 10 Sec  Memory Limit: 259 MB

Submit: 2363  Solved: 779

[

id=2186" style="color:blue; text-decoration:none">Submit][

id=2186" style="color:blue; text-decoration:none">Status][Discuss]

Description

  大富翁国由于通货膨胀,以及假钞泛滥。政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,可是,政府仅仅发行编号与M!互质的钞票。

房地产第一大户沙拉公主决定预測一下大富翁国如今全部真钞票的数量。

如今,请你帮助沙拉公主解决问题。由于可能张数很大,你仅仅需计算出对R取模后的答案就可以。R是一个质数。

Input

第一行为两个整数T,R。R<=10^9+10。T<=10000,表示该组中測试数据数目。R为模后面T行,每行一对整数N,M,见题目描写叙述 m<=n

Output

共T行。对于每一对N,M。输出1至N。中与M!素养的数的数量对R取模后的值

Sample Input

1 11

4 2


Sample Output

1



数据范围:

对于100%的数据,1 < = N , M < = 10000000

HINT

Source

欧拉函数+线性筛法+
乘法逆元

数论题的做法简直不能再6,感觉自己智商严重不够用…

首先答案为phi(m!)*n!/m!%p。由于全部小于m!且与m!互质的数加上m!的整数倍都与m!互质,而其它数都不与m!互质。(正确性显然)

那么这个式子怎么求呢???

我们能够分成两部分来求,phi(m!)/mi和n!。

n!%p是非常easy预处理的。这里的主要问题是怎样求phi(m!)/m!。

令f(m)=phi(m!)/m!,依据phi(x)=x*(p1-1)/p1*(p2-1)/p2*…

可得f(m)=(p1-1)/p1*(p2-1)/p2*…当中pi为不大于m的质数

所以对于f(i),假设i是质数f(i)=f(i-1)*(i-1)/m。否则f(i)=f(i-1)。

依据以上关系式能够预处理f(1)-f(10^7)。

每次询问仅仅须要输出f(m)*n!%p就可以。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#define F(i,j,n) for(int i=j;i<=n;i++)
#define D(i,j,n) for(int i=j;i>=n;i--)
#define ll long long
#define maxn 10000005
using namespace std;
int n,m,p,t;
ll fac[maxn],ans[maxn];
bool f[maxn];
inline int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline void exgcd(int a,int b,int &x,int &y)
{
if (!b){x=1;y=0;return;}
exgcd(b,a%b,x,y);
int t=x;x=y;y=t-a/b*x;
}
inline int getinv(int a)
{
int x=0,y=0;
exgcd(a,p,x,y);
return (x%p+p)%p;
}
int main()
{
t=read();p=read();
int x=10000000;
fac[1]=1;
F(i,2,x) fac[i]=fac[i-1]*i%p;
ans[1]=1;
F(i,2,x)
{
if (!f[i])
{
ans[i]=ans[i-1]*(i-1)%p*getinv(i)%p;
F(j,2,x/i) f[i*j]=true;
}
else ans[i]=ans[i-1];
}
while (t--)
{
n=read();m=read();
printf("%lld\n",ans[m]*fac[n]%p);
}
}

bzoj2186【SDOI2008】沙拉公主的困惑的更多相关文章

  1. BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 6103  Solved: 2060[Submit][S ...

  2. BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 5003  Solved: 1725 [Submit] ...

  3. [bzoj2186][Sdoi2008]沙拉公主的困惑_数论

    沙拉公主的困惑 bzoj-2186 Sdoi-2008 题目大意:求N!中与M!互质的数的个数. 注释:$1\le N,M\le 10^7$. 想法:显然是求$\phi(M!)$.这东西其实只需要将数 ...

  4. BZOJ2186: [Sdoi2008]沙拉公主的困惑

    传送门 常规数论题,利用欧拉函数的相关性质. 题求$[1,N!]$中与$M!$互质的数的个数,且$M \leq N$.然后根据欧拉函数的相关性质很容易得出这道题的答案为$\frac{\phi (M!) ...

  5. BZOJ2186 SDOI2008沙拉公主的困惑(数论)

    由于n!是m!的倍数,而对于每个与m!互质且小于m!的数x,x+m!.x+2*m!……也与其互质,所以答案即为(n!/m!)*φ(m!). φ(m!)=m!*∏(1-1/pi).其中的pi即为1~m中 ...

  6. [bzoj2186][Sdoi2008]沙拉公主的困惑——数论

    题目大意 求 \[\sum_{i = 1}^{N!} [gcd(i, M!) = 1]\] 题解 显然,题目就是求 \[N!(1-\frac{1}{p_1})(1-\frac{1}{p_2})...\ ...

  7. 【数论】【欧拉函数】【筛法求素数】【乘法逆元】【快速幂取模】bzoj2186 [Sdoi2008]沙拉公主的困惑

    http://www.cnblogs.com/BLADEVIL/p/3490321.html http://www.cnblogs.com/zyfzyf/p/3997986.html 翻了翻题解,这两 ...

  8. 【BZOJ2186】[Sdoi2008]沙拉公主的困惑 线性筛素数

    [BZOJ2186][Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M! ...

  9. 【bzoj2186】: [Sdoi2008]沙拉公主的困惑 数论-欧拉函数

    [bzoj2186]: [Sdoi2008]沙拉公主的困惑 考虑当 gcd(a,b)=1 则 gcd(nb+a,b)=1 所以[1,N!]与M!互质的个数就是 筛出[1,M]所有的素数p[i] 以及逆 ...

  10. 【bzoj2186】[Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3303  Solved: 1129[Submit][S ...

随机推荐

  1. opencv3+python+pycharm报错问题(cmd命令正常)

    2018-03-0223:58:59 首先在你已成功安装python的情况下运行cmd命令,下载安装opencv插件 如果在命令行可以使用 import cv2 但是在IDE上面只输入import c ...

  2. CentOS6.6从头到尾部署nginx与tomcat多实例

    前提条件: 1.需要一个全新的centos系统(本文中用到是centos6.6) 2.vmware虚拟机 3.vmware下安装centos系统,以NAT方式与宿主机相连 4.在centos系统中pi ...

  3. SugarCRM安装过程——PHP文件上传限制问题

    找到D:\xampp\php目录下,php文件中的php.ini文件,用写字板打开: 1.查找post_max_size,指通过表单POST给PHP的所能接收的最大值,包括表单里的所有值,默认为8M, ...

  4. python 3 Urllib 数据抓取

    1.0 Urllib简介 Urllib是python自带的标准库,无需安装,直接引用即可.urllib通常用于爬虫开发,API(应用程序编程接口)数据获取和测试.在python2和python3中,u ...

  5. 15Microsoft SQL Server 数据库维护

    Microsoft SQL Server 数据库维护 2.6.1数据库联机与脱机 --联机:该状态为数据库正常状态,也就是我们常看到的数据库的状态,该状态下的数据库处于可操作状态,可以对数据库进行任何 ...

  6. datatable 分组

    public static void PrintPersons() { //准备数据 DataTable dt = new DataTable(); dt.Columns.Add(new DataCo ...

  7. The King’s Ups and Downs(HDU 4489,动态规划递推,组合数,国王的游戏)

    题意: 给一个数字n,让1到n的所有数都以波浪形排序,即任意两个相邻的数都是一高一低或者一低一高 比如:1324   4231,再比如4213就是错的,因为4高,2低,接下来1就应该比2高,但是它没有 ...

  8. 16监听器、Filter、Nginx、Spring、AOP

    16监听器.Filter.Nginx.Spring.AOP-2018/07/30 1.监听器 监听web对象创建与销毁的监听器 ServletContextListener HttpSessionLi ...

  9. knockout.js--基本用法

    1,HTML元素的面向对象的赋值,数据绑定 text绑定:为p,span,div,td等加text属性值(即元素内部显示的文本), value绑定:为input添加value属性值, attr绑定:为 ...

  10. 移动端placeholder不能垂直居中解决方案

    1.问题描述 问题如图:手机端placeholder文字偏上,垂直方向不居中,input光标显示偏上解决IE下不支持placeholder属性 2.解决方案 css .phoneNumber inpu ...