SvT bzoj-3879

题目大意:给定一个字符串。每次询问给定$t$个位置,求两两位置开头的后缀的$LCP$之和。

注释:$1\le length\le 5\cdot 10^5$,$\sum t\le 3\cdot 10^6$。


想法

不难想到构建后缀数组。

进而我们的问题就转化成了给定序列上一些位置求这些位置两两之间区间最小值的和。

对$ht$数组建立$ST$表。

接下来的过程可以用单调栈维护。

Code:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 500010
using namespace std; typedef long long ll;
int n,m,wa[N],wb[N],wv[N],sa[N],height[N],rank[N],r[N],Ws[N];
char ch[N];
int f[21][N],L[N],vis[N],s[N],g[N];
int v[3000050],Q[3000050];
ll dp[N];
inline char nc()
{
static char buf[100000],*p1,*p2;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int rd()
{
int x=0; char c=nc();
while(c<'0'||c>'9') c=nc();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-'0',c=nc();
return x;
}
inline int rc()
{
char c=nc();
while(c<'a'||c>'z') c=nc();
return (int)c;
} void build_sa()
{
m=27;
int i,j,p,*x=wa,*y=wb,*t;
for(i=0;i<m;i++) Ws[i]=0;
for(i=0;i<n;i++) Ws[x[i]=r[i]]++;
for(i=1;i<m;i++) Ws[i]+=Ws[i-1];
for(i=n-1;i>=0;i--) sa[--Ws[x[i]]]=i;
for(p=j=1;p<n;j<<=1,m=p)
{
for(p=0,i=n-j;i<n;i++) y[p++]=i;
for(i=0;i<n;i++) if(sa[i]-j>=0) y[p++]=sa[i]-j;
for(i=0;i<n;i++) wv[i]=x[y[i]];
for(i=0;i<m;i++) Ws[i]=0;
for(i=0;i<n;i++) Ws[wv[i]]++;
for(i=1;i<m;i++) Ws[i]+=Ws[i-1];
for(i=n-1;i>=0;i--) sa[--Ws[wv[i]]]=y[i];
for(t=x,x=y,y=t,i=p=1,x[sa[0]]=0;i<n;i++)
{
if(y[sa[i]]==y[sa[i-1]]&&y[sa[i]+j]==y[sa[i-1]+j]) x[sa[i]]=p-1;
else x[sa[i]]=p++;
}
}
for(i=1;i<n;i++) rank[sa[i]]=i;
for(i=p=0;i<n-1;height[rank[i++]]=p)
for(p?p--:0,j=sa[rank[i]-1];r[i+p]==r[j+p];p++);
}
int get_min(int l,int r)
{
int len=L[r-l+1];
return min(f[len][l],f[len][r-(1<<len)+1]);
}
void ST()
{
int i,j;
for(i=2;i<=n;i++) L[i]=L[i>>1]+1;
for(i=1;i<=n;i++) f[0][i]=height[i];
for(i=1;(1<<i)<=n;i++)
{
for(j=1;j+(1<<i)-1<=n;j++) f[i][j]=min(f[i-1][j],f[i-1][j+(1<<(i-1))]);
}
}
bool cmp(int x,int y)
{
return rank[x]<rank[y];
}
int main()
{
int T;
n=rd(); T=rd();
int i;
for(i=0;i<n;i++) r[i]=rc()-'a'+1;
r[n++]=0;
int tot=0;
build_sa(); n--; ST();
while(T--)
{
tot++;
int t=0;
v[0]=rd();
int j;
for(j=1;j<=v[0];j++)
{
v[j]=rd();
v[j]--;
if(vis[v[j]]==tot) {j--; v[0]--;}
vis[v[j]]=tot;
}
sort(v+1,v+v[0]+1,cmp);
for(j=1;j<v[0];j++)
{
g[j]=get_min(rank[v[j]]+1,rank[v[j+1]]);
}
t=1; Q[1]=0;
long long ans=0;
for(j=1;j<v[0];j++)
{
while(t&&g[Q[t]]>g[j]) t--;
dp[j]=dp[Q[t]]+1ll*(j-Q[t])*g[j];
ans+=dp[j];
Q[++t]=j;
}
printf("%lld\n",ans);
}
return 0;
}

小结:后缀数组真好玩。

[bzoj3879]SvT_后缀数组_RMQ_单调栈的更多相关文章

  1. poj3415 Common Substrings(后缀数组,单调栈 | 后缀自动机)

    [题目链接] http://poj.org/problem?id=3415 [题意] A与B长度至少为k的公共子串个数. [思路] 基本思想是将AB各个后缀的lcp-k+1的值求和.首先将两个字符串拼 ...

  2. [bzoj3238][Ahoi2013]差异_后缀数组_单调栈

    差异 bzoj-3238 Ahoi-2013 题目大意:求任意两个后缀之间的$LCP$的和. 注释:$1\le length \le 5\cdot 10^5$. 想法: 两个后缀之间的$LCP$和显然 ...

  3. 洛谷P2178 [NOI2015]品酒大会 后缀数组+单调栈

    P2178 [NOI2015]品酒大会 题目链接 https://www.luogu.org/problemnew/show/P2178 题目描述 一年一度的"幻影阁夏日品酒大会" ...

  4. Gym - 102028H Can You Solve the Harder Problem? (后缀数组+RMQ+单调栈)

    题意:求一个序列中本质不同的连续子序列的最大值之和. 由于要求“本质不同”,所以后缀数组就派上用场了,可以从小到大枚举每个后缀,对于每个sa[i],从sa[i]+ht[i]开始枚举(ht[0]=0), ...

  5. 洛谷4248 AHOI2013差异 (后缀数组SA+单调栈)

    补博客! 首先我们观察题目中给的那个求\(ans\)的方法,其实前两项没什么用处,直接\(for\)一遍就求得了 for (int i=1;i<=n;i++) ans=ans+i*(n-1); ...

  6. 【POJ3415】Common Substrings(后缀数组,单调栈)

    题意: n<=1e5 思路: 我的做法和题解有些不同 题解是维护A的单调栈算B的贡献,反过来再做一次 我是去掉起始位置不同这个限制条件先算总方案数,再把两个串内部不合法的方案数减去 式子展开之后 ...

  7. 【BZOJ3238】差异(后缀数组,单调栈)

    题意: 思路:显然len(t[i])+len(t[j])这部分的和是一定的 那么问题就在于如何快速求出两两之间lcp之和 考虑将它们排名后用SA可以很方便的求出lcp,且对答案没有影响,因为形式都是数 ...

  8. POJ.3145.Common Substrings(后缀数组 倍增 单调栈)

    题目链接 \(Description\) 求两个字符串长度不小于k的公共子串对数. \(Solution\) 求出ht[]后先减去k,这样对于两个后缀A',B',它们之间的贡献为min{ht(A)}( ...

  9. BZOJ3879:SvT(后缀数组,单调栈,ST表)

    Description (我并不想告诉你题目名字是什么鬼) 有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n]. 现在有若干组询问,对于每一个询问,我们给出若干个后缀(以其在S中出现的起始 ...

随机推荐

  1. CF792C Divide by Three

    思路: dp. 实现: #include <iostream> #include <cstdio> #include <cstring> #include < ...

  2. mybatis 返回值

    转载: 在使用ibatis插入数据进数据库的时候,会用到一些sequence的数据,有些情况下,在插入完成之后还需要将sequence的值返回,然后才能进行下一步的操作.      使用ibatis的 ...

  3. 洛谷 P1364 医院设置

    题目描述 设有一棵二叉树,如图: 其中,圈中的数字表示结点中居民的人口.圈边上数字表示结点编号,现在要求在某个结点上建立一个医院,使所有居民所走的路程之和为最小,同时约定,相邻接点之间的距离为l.如上 ...

  4. 深入理解java虚拟机---垃圾收集器和分配策略-1

    博文重点: 学习目标:哪些内存需要回收 什么时候回收    如何回收 在基于概念讨论的模型中,主要对Java堆和方法区进行讨论. why?:一个接口中的多个实现类需要的内存可能不一样,一个方法中的多个 ...

  5. (转) 淘淘商城系列——解决KindEditor上传图片浏览器兼容性问题

    http://blog.csdn.net/yerenyuan_pku/article/details/72808229 上文我们已实现了图片上传功能,但是有个问题,那就是对浏览器兼容性不够,因为Map ...

  6. Android(java)学习笔记198:ContentProvider使用之内容观察者(观察发出去的短信)

    1.新建一个案例如下: 2. 不需要添加权限,同时这里布局文件不做修改,来到MainActivity,如下: package com.itheima.sendsmslistener; import a ...

  7. jquery 微信端 点击物理返回按钮,弹出提示框

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. ansible中yaml语法应用

    4.yaml语法应用 ansible的playbook编写是yaml语言编写,掌握yaml语法是编写playbook的必要条件,格式要求和Python相似,具体教程参考如下 yaml语言教程 附上一个 ...

  9. Java格式化CST时间(mysql date类型)

    在从mysql导入数据时候,mysql里的日期是格林威治时间,普通格式化不行,这里总结一下格式化格林威治时间的方法: Date date = new Date(); System.out.printl ...

  10. gdb 基础

    版权:https://linuxtools-rst.readthedocs.io/zh_CN/latest/tool/gdb.html 1. gdb 调试利器 GDB是一个由GNU开源组织发布的.UN ...