D. Gourmet choice
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Mr. Apple, a gourmet, works as editor-in-chief of a gastronomic periodical. He travels around the world, tasting new delights of famous chefs from the most fashionable restaurants. Mr. Apple has his own signature method of review  — in each restaurant Mr. Apple orders two sets of dishes on two different days. All the dishes are different, because Mr. Apple doesn't like to eat the same food. For each pair of dishes from different days he remembers exactly which was better, or that they were of the same quality. After this the gourmet evaluates each dish with a positive integer.

Once, during a revision of a restaurant of Celtic medieval cuisine named «Poisson», that serves chestnut soup with fir, warm soda bread, spicy lemon pie and other folk food, Mr. Apple was very pleasantly surprised the gourmet with its variety of menu, and hence ordered too much. Now he's confused about evaluating dishes.

The gourmet tasted a set of nn dishes on the first day and a set of mm dishes on the second day. He made a table aa of size n×mn×m, in which he described his impressions. If, according to the expert, dish ii from the first set was better than dish jj from the second set, then aijaij is equal to ">", in the opposite case aijaij is equal to "<". Dishes also may be equally good, in this case aijaij is "=".

Now Mr. Apple wants you to help him to evaluate every dish. Since Mr. Apple is very strict, he will evaluate the dishes so that the maximal number used is as small as possible. But Mr. Apple also is very fair, so he never evaluates the dishes so that it goes against his feelings. In other words, if aijaij is "<", then the number assigned to dish ii from the first set should be less than the number of dish jj from the second set, if aijaij is ">", then it should be greater, and finally if aijaij is "=", then the numbers should be the same.

Help Mr. Apple to evaluate each dish from both sets so that it is consistent with his feelings, or determine that this is impossible.

Input

The first line contains integers nn and mm (1≤n,m≤10001≤n,m≤1000) — the number of dishes in both days.

Each of the next nn lines contains a string of mm symbols. The jj-th symbol on ii-th line is aijaij. All strings consist only of "<", ">" and "=".

Output

The first line of output should contain "Yes", if it's possible to do a correct evaluation for all the dishes, or "No" otherwise.

If case an answer exist, on the second line print nn integers — evaluations of dishes from the first set, and on the third line print mmintegers — evaluations of dishes from the second set.

Examples
input

Copy
3 4
>>>>
>>>>
>>>>
output

Copy
Yes
2 2 2
1 1 1 1
input

Copy
3 3
>>>
<<<
>>>
output

Copy
Yes
3 1 3
2 2 2
input

Copy
3 2
==
=<
==
output

Copy
No
Note

In the first sample, all dishes of the first day are better than dishes of the second day. So, the highest score will be 22, for all dishes of the first day.

In the third sample, the table is contradictory — there is no possible evaluation of the dishes that satisfies it

.题意:问有没有符合条件的n个数和m个数满足矩阵的条件

以下是大神的解答,我还不太会

题解:一看有比较大小,很明显我们可以通过拓扑排序来完成,小的指向大的,每一个数取符合条件的最小的(即指向他的最大的数+1)即可,至于相等的呢,我们就把他们先连接到一块,傻逼了,写错了个地方,并查集连接到一块的只有祖先有值,写成了取父亲的,也是操蛋,。。。。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=;
int a[];
int pre[];
int n,m;
char s[][];
vector<int> v[];
int in[];
int f(int x)
{
return x==pre[x]?x:pre[x]=f(pre[x]);
}
int main()
{
int ans=;
scanf("%d%d",&n,&m);
for(int i=;i<=;i++) pre[i]=i;
for(int i=;i<=n;i++)
{
scanf("%s",s[i]+);
for(int j=;j<=m;j++)
{
if(s[i][j]=='=')
{
int xx=f(i);
int yy=f(j+);
if(xx==yy) continue;
pre[yy]=xx;
ans++;
}
}
} for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
if(s[i][j]=='=') continue;
int xx=f(i);
int yy=f(j+); if(s[i][j]=='<')
{
v[xx].push_back(yy);
in[yy]++;
}
else
{
v[yy].push_back(xx);
in[xx]++;
}
}
}
queue<int> q;
for(int i=;i<=n;i++)
{
if(pre[i]==i&&in[i]==)
{
q.push(i);
a[i]=;
ans++;
}
}
for(int i=;i<=m+;i++)
{
if(pre[i]==i&&in[i]==)
{
q.push(i);
a[i]=;
ans++;
}
}
if(q.empty()) printf("No\n");
else
{
while(!q.empty())
{
int u=q.front();q.pop();
for(int i=;i<v[u].size();i++)
{
int to=v[u][i];
in[to]--;
if(a[to]==) a[to]=a[u]+;
else a[to]=max(a[to],a[u]+);
if(in[to]==)
{
ans++;q.push(to);
}
}
}
if(ans!=n+m)
{
printf("No\n");
return ;
}
printf("Yes\n");
for(int i=;i<=n;i++)
{
// cout<<pre[i]<<endl;
if(pre[i]!=i) a[i]=a[f(i)]; printf("%d%c",a[i]," \n"[i==n]);
}
for(int i=;i<=m+;i++)
{
if(pre[i]!=i) a[i]=a[f(i)]; printf("%d%c",a[i]," \n"[i==m+]);
}
}
return ;
}

以下是cf其他的解答

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue> using namespace std;
const int N=; vector<int> v[N];
queue<int> Q;
int n,m,col[N],stk[N],top,cnt,val[N][N],zz[N];
int dfn[N],low[N],ans[N],col_num,f[N],num,d[N];
bool vis[N];
struct Edge{
int u,v,w;
}edge[N*N]; inline void add(int x,int y,int z){
v[x].push_back(y); val[x][y]=z;
} void tarjan(int x){
dfn[x]=low[x]=++num;
stk[++top]=x; vis[x]=; int u;
for(int i=;i<v[x].size();i++){
u=v[x][i];
if(!dfn[u]) tarjan(u),low[x]=min(low[x],low[u]);
else if(vis[u]) low[x]=min(low[x],dfn[u]);
}
if(dfn[x]!=low[x]) return;
col[x]=++col_num; vis[x]=; int lst=x;
while(stk[top]!=x){
col[stk[top]]=col_num;
vis[stk[top]]=;
zz[col_num]+=val[stk[top]][lst];
lst=stk[top]; top--;
} zz[col_num]+=val[lst][x]; top--;
} int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
char ch=getchar();
while(ch!='=' && ch!='<' && ch!='>') ch=getchar();
if(ch=='<'){
add(i,j+n,);
edge[++cnt].u=i,edge[cnt].v=j+n,edge[cnt].w=;
}
else if(ch=='>'){
add(j+n,i,);
edge[++cnt].u=j+n,edge[cnt].v=i,edge[cnt].w=;
}
else {
edge[++cnt].u=i; edge[cnt].v=j+n; edge[cnt].w=;
edge[++cnt].u=j+n; edge[cnt].v=i; edge[cnt].w=;
add(i,j+n,); add(j+n,i,);
}
}
for(int i=;i<=n+m;i++) if(!dfn[i]) tarjan(i);
for(int i=;i<=col_num;i++)
if(zz[i]>) {puts("No"); return ;}
for(int i=;i<=col_num;i++)
v[i].clear();
memset(val,,sizeof(val));
for(int i=;i<=cnt;i++){
int u=edge[i].u,v=edge[i].v,w=edge[i].w;
if(col[u]==col[v]) continue;
add(col[u],col[v],w); d[col[v]]++;
}
for(int i=;i<=col_num;i++)
if(!d[i]) f[i]=,Q.push(i);
while(Q.size()){
int x=Q.front(); Q.pop();
for(int i=;i<v[x].size();i++){
int u=v[x][i];
f[u]=max(f[u],f[x]+val[x][u]);
d[u]--; if(!d[u]) Q.push(u);
}
}
puts("Yes");
for(int i=;i<=n;i++) printf("%d ",f[col[i]]);
puts("");
for(int i=n+;i<=n+m;i++) printf("%d ",f[col[i]]);
return ;
}

D. Gourmet choice并查集,拓扑结构的更多相关文章

  1. Codeforces #541 (Div2) - D. Gourmet choice(拓扑排序+并查集)

    Problem   Codeforces #541 (Div2) - D. Gourmet choice Time Limit: 2000 mSec Problem Description Input ...

  2. codeforces #541 D. Gourmet choice(拓扑+并查集)

    Mr. Apple, a gourmet, works as editor-in-chief of a gastronomic periodical. He travels around the wo ...

  3. CF1131D Gourmet choice(并查集,拓扑排序)

    这题CF给的难度是2000,但我感觉没这么高啊…… 题目链接:CF原网 题目大意:有两个正整数序列 $a,b$,长度分别为 $n,m$.给出所有 $a_i$ 和 $b_j(1\le i\le n,1\ ...

  4. Codeforces Round #541 (Div. 2) D(并查集+拓扑排序) F (并查集)

    D. Gourmet choice 链接:http://codeforces.com/contest/1131/problem/D 思路: =  的情况我们用并查集把他们扔到一个集合,然后根据 > ...

  5. Redundant Paths-POJ3177(并查集+双连通分量)

    Redundant Paths Description In order to get from one of the F (1 <= F <= 5,000) grazing fields ...

  6. UVA1623-Enter The Dragon(并查集)

    Problem UVA1623-Enter The Dragon Accept: 108  Submit: 689Time Limit: 3000 mSec Problem Description T ...

  7. BZOJ 4199: [Noi2015]品酒大会 [后缀数组 带权并查集]

    4199: [Noi2015]品酒大会 UOJ:http://uoj.ac/problem/131 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品 ...

  8. 关押罪犯 and 食物链(并查集)

    题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用"怨气值"( ...

  9. 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用

    图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...

随机推荐

  1. ACTION 关联表之间查询语句 SQL语句写法

    /** EquUseRecord * @author cll * @return * @右边菜单中的使用记录操作 */ public String QueryAllEquUserecordAllInf ...

  2. POJ - 3352 Road Construction(边双连通分支)

    1.给定一个连通的无向图G,至少要添加几条边,才能使其变为双连通图. 2.POJ - 3177 Redundant Paths(边双连通分支)(模板)  与这道题一模一样.代码就改了下范围,其他都没动 ...

  3. HubbleDotNet开源全文搜索数据库项目--技术详解

    HubbleDotNet 简介 HubbleDotNet 和 Lucene.net 性能对比测试 HubbleDotNet 和 Lucene.Net 匹配相关度的比较 HubbleDotNet 软件架 ...

  4. idea把项目提交到svn服务器步骤

    1.设置忽略文件.文件夹 2.找到以下选项 3.选择要上传项目的svn服务器地方和svn管理目录 4.填完相关提交信息,点击share就ok啦

  5. ios学习顺序表

  6. URAL2104. Game with a Strip(博弈)

    There is a strip 1 × n with two sides. Each square of the strip (their total amount is 2n, n squares ...

  7. 协程的优点(Python)

    协程的优点: 协程是进程和线程的升级版,进程和线程都面临着内核态和用户态的切换问题而耗费许多切换时间, 而协程就是用户自己控制切换的时机,不再需要陷入系统的内核态.协程的执行效率非常高.因为子程序切换 ...

  8. Ubuntu 环境变量及 ADB 配置 (转载)

    转自:http://blog.csdn.net/ithomer/article/details/7307449 同Windows一样,Ubuntu Linux系统包含两类环境变量:系统环境变量和用户环 ...

  9. shiro之jdbcRealm

    Shiro认证过程 创建SecurityManager--->主体提交认证--->SecurityManager认证--->Authenticsto认证--->Realm验证 ...

  10. javascript 冒泡与捕获的原理及操作实例

    所谓的javascript冒泡与捕获不是数据结构中的冒泡算法,而是javascript针对dom事件处理的先后顺序,所谓的先后顺序是指针对父标签与其嵌套子标签,如果父标签与嵌套子标签均有相同的事件时, ...