D. Gourmet choice
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Mr. Apple, a gourmet, works as editor-in-chief of a gastronomic periodical. He travels around the world, tasting new delights of famous chefs from the most fashionable restaurants. Mr. Apple has his own signature method of review  — in each restaurant Mr. Apple orders two sets of dishes on two different days. All the dishes are different, because Mr. Apple doesn't like to eat the same food. For each pair of dishes from different days he remembers exactly which was better, or that they were of the same quality. After this the gourmet evaluates each dish with a positive integer.

Once, during a revision of a restaurant of Celtic medieval cuisine named «Poisson», that serves chestnut soup with fir, warm soda bread, spicy lemon pie and other folk food, Mr. Apple was very pleasantly surprised the gourmet with its variety of menu, and hence ordered too much. Now he's confused about evaluating dishes.

The gourmet tasted a set of nn dishes on the first day and a set of mm dishes on the second day. He made a table aa of size n×mn×m, in which he described his impressions. If, according to the expert, dish ii from the first set was better than dish jj from the second set, then aijaij is equal to ">", in the opposite case aijaij is equal to "<". Dishes also may be equally good, in this case aijaij is "=".

Now Mr. Apple wants you to help him to evaluate every dish. Since Mr. Apple is very strict, he will evaluate the dishes so that the maximal number used is as small as possible. But Mr. Apple also is very fair, so he never evaluates the dishes so that it goes against his feelings. In other words, if aijaij is "<", then the number assigned to dish ii from the first set should be less than the number of dish jj from the second set, if aijaij is ">", then it should be greater, and finally if aijaij is "=", then the numbers should be the same.

Help Mr. Apple to evaluate each dish from both sets so that it is consistent with his feelings, or determine that this is impossible.

Input

The first line contains integers nn and mm (1≤n,m≤10001≤n,m≤1000) — the number of dishes in both days.

Each of the next nn lines contains a string of mm symbols. The jj-th symbol on ii-th line is aijaij. All strings consist only of "<", ">" and "=".

Output

The first line of output should contain "Yes", if it's possible to do a correct evaluation for all the dishes, or "No" otherwise.

If case an answer exist, on the second line print nn integers — evaluations of dishes from the first set, and on the third line print mmintegers — evaluations of dishes from the second set.

Examples
input

Copy
3 4
>>>>
>>>>
>>>>
output

Copy
Yes
2 2 2
1 1 1 1
input

Copy
3 3
>>>
<<<
>>>
output

Copy
Yes
3 1 3
2 2 2
input

Copy
3 2
==
=<
==
output

Copy
No
Note

In the first sample, all dishes of the first day are better than dishes of the second day. So, the highest score will be 22, for all dishes of the first day.

In the third sample, the table is contradictory — there is no possible evaluation of the dishes that satisfies it

.题意:问有没有符合条件的n个数和m个数满足矩阵的条件

以下是大神的解答,我还不太会

题解:一看有比较大小,很明显我们可以通过拓扑排序来完成,小的指向大的,每一个数取符合条件的最小的(即指向他的最大的数+1)即可,至于相等的呢,我们就把他们先连接到一块,傻逼了,写错了个地方,并查集连接到一块的只有祖先有值,写成了取父亲的,也是操蛋,。。。。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=;
int a[];
int pre[];
int n,m;
char s[][];
vector<int> v[];
int in[];
int f(int x)
{
return x==pre[x]?x:pre[x]=f(pre[x]);
}
int main()
{
int ans=;
scanf("%d%d",&n,&m);
for(int i=;i<=;i++) pre[i]=i;
for(int i=;i<=n;i++)
{
scanf("%s",s[i]+);
for(int j=;j<=m;j++)
{
if(s[i][j]=='=')
{
int xx=f(i);
int yy=f(j+);
if(xx==yy) continue;
pre[yy]=xx;
ans++;
}
}
} for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
if(s[i][j]=='=') continue;
int xx=f(i);
int yy=f(j+); if(s[i][j]=='<')
{
v[xx].push_back(yy);
in[yy]++;
}
else
{
v[yy].push_back(xx);
in[xx]++;
}
}
}
queue<int> q;
for(int i=;i<=n;i++)
{
if(pre[i]==i&&in[i]==)
{
q.push(i);
a[i]=;
ans++;
}
}
for(int i=;i<=m+;i++)
{
if(pre[i]==i&&in[i]==)
{
q.push(i);
a[i]=;
ans++;
}
}
if(q.empty()) printf("No\n");
else
{
while(!q.empty())
{
int u=q.front();q.pop();
for(int i=;i<v[u].size();i++)
{
int to=v[u][i];
in[to]--;
if(a[to]==) a[to]=a[u]+;
else a[to]=max(a[to],a[u]+);
if(in[to]==)
{
ans++;q.push(to);
}
}
}
if(ans!=n+m)
{
printf("No\n");
return ;
}
printf("Yes\n");
for(int i=;i<=n;i++)
{
// cout<<pre[i]<<endl;
if(pre[i]!=i) a[i]=a[f(i)]; printf("%d%c",a[i]," \n"[i==n]);
}
for(int i=;i<=m+;i++)
{
if(pre[i]!=i) a[i]=a[f(i)]; printf("%d%c",a[i]," \n"[i==m+]);
}
}
return ;
}

以下是cf其他的解答

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue> using namespace std;
const int N=; vector<int> v[N];
queue<int> Q;
int n,m,col[N],stk[N],top,cnt,val[N][N],zz[N];
int dfn[N],low[N],ans[N],col_num,f[N],num,d[N];
bool vis[N];
struct Edge{
int u,v,w;
}edge[N*N]; inline void add(int x,int y,int z){
v[x].push_back(y); val[x][y]=z;
} void tarjan(int x){
dfn[x]=low[x]=++num;
stk[++top]=x; vis[x]=; int u;
for(int i=;i<v[x].size();i++){
u=v[x][i];
if(!dfn[u]) tarjan(u),low[x]=min(low[x],low[u]);
else if(vis[u]) low[x]=min(low[x],dfn[u]);
}
if(dfn[x]!=low[x]) return;
col[x]=++col_num; vis[x]=; int lst=x;
while(stk[top]!=x){
col[stk[top]]=col_num;
vis[stk[top]]=;
zz[col_num]+=val[stk[top]][lst];
lst=stk[top]; top--;
} zz[col_num]+=val[lst][x]; top--;
} int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
char ch=getchar();
while(ch!='=' && ch!='<' && ch!='>') ch=getchar();
if(ch=='<'){
add(i,j+n,);
edge[++cnt].u=i,edge[cnt].v=j+n,edge[cnt].w=;
}
else if(ch=='>'){
add(j+n,i,);
edge[++cnt].u=j+n,edge[cnt].v=i,edge[cnt].w=;
}
else {
edge[++cnt].u=i; edge[cnt].v=j+n; edge[cnt].w=;
edge[++cnt].u=j+n; edge[cnt].v=i; edge[cnt].w=;
add(i,j+n,); add(j+n,i,);
}
}
for(int i=;i<=n+m;i++) if(!dfn[i]) tarjan(i);
for(int i=;i<=col_num;i++)
if(zz[i]>) {puts("No"); return ;}
for(int i=;i<=col_num;i++)
v[i].clear();
memset(val,,sizeof(val));
for(int i=;i<=cnt;i++){
int u=edge[i].u,v=edge[i].v,w=edge[i].w;
if(col[u]==col[v]) continue;
add(col[u],col[v],w); d[col[v]]++;
}
for(int i=;i<=col_num;i++)
if(!d[i]) f[i]=,Q.push(i);
while(Q.size()){
int x=Q.front(); Q.pop();
for(int i=;i<v[x].size();i++){
int u=v[x][i];
f[u]=max(f[u],f[x]+val[x][u]);
d[u]--; if(!d[u]) Q.push(u);
}
}
puts("Yes");
for(int i=;i<=n;i++) printf("%d ",f[col[i]]);
puts("");
for(int i=n+;i<=n+m;i++) printf("%d ",f[col[i]]);
return ;
}

D. Gourmet choice并查集,拓扑结构的更多相关文章

  1. Codeforces #541 (Div2) - D. Gourmet choice(拓扑排序+并查集)

    Problem   Codeforces #541 (Div2) - D. Gourmet choice Time Limit: 2000 mSec Problem Description Input ...

  2. codeforces #541 D. Gourmet choice(拓扑+并查集)

    Mr. Apple, a gourmet, works as editor-in-chief of a gastronomic periodical. He travels around the wo ...

  3. CF1131D Gourmet choice(并查集,拓扑排序)

    这题CF给的难度是2000,但我感觉没这么高啊…… 题目链接:CF原网 题目大意:有两个正整数序列 $a,b$,长度分别为 $n,m$.给出所有 $a_i$ 和 $b_j(1\le i\le n,1\ ...

  4. Codeforces Round #541 (Div. 2) D(并查集+拓扑排序) F (并查集)

    D. Gourmet choice 链接:http://codeforces.com/contest/1131/problem/D 思路: =  的情况我们用并查集把他们扔到一个集合,然后根据 > ...

  5. Redundant Paths-POJ3177(并查集+双连通分量)

    Redundant Paths Description In order to get from one of the F (1 <= F <= 5,000) grazing fields ...

  6. UVA1623-Enter The Dragon(并查集)

    Problem UVA1623-Enter The Dragon Accept: 108  Submit: 689Time Limit: 3000 mSec Problem Description T ...

  7. BZOJ 4199: [Noi2015]品酒大会 [后缀数组 带权并查集]

    4199: [Noi2015]品酒大会 UOJ:http://uoj.ac/problem/131 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品 ...

  8. 关押罪犯 and 食物链(并查集)

    题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用"怨气值"( ...

  9. 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用

    图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...

随机推荐

  1. win7上安装macaca的报错问题

    macaca网上的各种教程中,都建议使用淘宝源安装macaca,使用淘宝源就需要先安装cnpm,在win7上切换到淘宝源安装cnpm后(npm install -g cnpm --registry=h ...

  2. 【137】Photoshop相关功能

    1. photoshop中怎样批处理操作 图文教程 来源:http://www.jb51.net/photoshop/57784.html 不知道大家有没有接触过PS里面的批处理呢,当我们要完成数百张 ...

  3. 学习Python到写poc其实没那么难

    现在,开始! 0x00 前言 今天刚刚把http://drops.wooyun.org/tips/12751放到收藏夹准备看的,然后又看到题主的这个问题.顺便观摩了1楼大神的博客,我这种炒鸡新手表示很 ...

  4. 洛谷 P4015 运输问题 【最小费用最大流+最大费用最大流】

    s向仓库i连ins(s,i,a[i],0),商店向t连ins(i+m,t,b[i],0),商店和仓库之间连ins(i,j+m,inf,c[i][j]).建两次图分别跑最小费用最大流和最大费用最大流即可 ...

  5. 洛谷 P4013 数字梯形问题【最大费用最大流】

    第一问:因为每个点只能经过一次,所以拆点限制流量,建(i,i',1,val[i]),然后s向第一行建(s,i,1,0),表示每个点只能出发一次,然后最后一行连向汇点(i',t,1,0),跑最大费用最大 ...

  6. 利用爬虫将Yuan先生的博客文章爬取下来

    由于一次巧遇,我阅读了Yuan先生的一篇博客文章,感觉从Yuan先生得博客学到很多东西,很喜欢他得文章.于是我就关注了他,并且想阅读更多出自他手笔得博客文章,无奈,可能Yuan先生不想公开自己得博客吧 ...

  7. SpringBoot入门-15(springboot配置freemarker使用YML)

    https://blog.csdn.net/fengsi2009/article/details/78879924 application.yml spring: http: encoding: fo ...

  8. Python之Linux下的virtualenv&&virtualenvwrapper

    virtualenv 可以在系统中建立多个不同并且相互不干扰的虚拟环境. #指定清华源下载pip的包 pip3 install -i https://pypi.tuna.tsinghua.edu.cn ...

  9. JDBC中Oracle的SID和ServiceName两种方式的连接字符串格式

    SID格式: jdbc:oracle:thin:@<host>:<port>:<SID> 如: jdbc:oracle:thin:@192.168.1.1:1521 ...

  10. Oracle查看所有表空间的数据使用情况

    -- 查看所有表空间的数据使用情况 SELECT Upper(F.TABLESPACE_NAME) "表空间名", D.TOT_GROOTTE_MB "表空间大小(M)& ...