题目链接:

D. Remainders Game

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Today Pari and Arya are playing a game called Remainders.

Pari chooses two positive integer x and k, and tells Arya k but not x. Arya have to find the value . There are n ancient numbers c1, c2, ..., cn and Pari has to tell Arya  if Arya wants. Given k and the ancient values, tell us if Arya has a winning strategy independent of value of x or not. Formally, is it true that Arya can understand the value  for any positive integer x?

Note, that  means the remainder of x after dividing it by y.

Input

The first line of the input contains two integers n and k (1 ≤ n,  k ≤ 1 000 000) — the number of ancient integers and value k that is chosen by Pari.

The second line contains n integers c1, c2, ..., cn (1 ≤ ci ≤ 1 000 000).

Output

Print "Yes" (without quotes) if Arya has a winning strategy independent of value of x, or "No" (without quotes) otherwise.

Examples
input
4 5
2 3 5 12
output
Yes
input
2 7
2 3
output
No

题意:

给出c1,c2,...cn,问对于任何一个正整数x,给出x%c1,x%c2,...的值x%k的值是否确定;

思路:

中国剩余定理,给个链接:传送门

AC代码:
//#include <bits/stdc++.h>
#include <vector>
#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <cstring>
#include <algorithm>
#include <cstdio> using namespace std;
#define Riep(n) for(int i=1;i<=n;i++)
#define Riop(n) for(int i=0;i<n;i++)
#define Rjep(n) for(int j=1;j<=n;j++)
#define Rjop(n) for(int j=0;j<n;j++)
#define mst(ss,b) memset(ss,b,sizeof(ss));
typedef long long LL;
template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<''||CH>'';F= CH=='-',CH=getchar());
for(num=;CH>=''&&CH<='';num=num*+CH-'',CH=getchar());
F && (num=-num);
}
int stk[], tp;
template<class T> inline void print(T p) {
if(!p) { puts(""); return; }
while(p) stk[++ tp] = p%, p/=;
while(tp) putchar(stk[tp--] + '');
putchar('\n');
} const LL mod=1e9+;
const double PI=acos(-1.0);
const LL inf=1e18;
const int N=1e6+;
const int maxn=;
const double eps=1e-; int n,k;
LL c[N];
LL gcd(LL a,LL b)
{
if(b==)return a;
return gcd(b,a%b);
}
int main()
{
read(n);read(k);
LL lcm=;
for(int i=;i<=n;i++)
{
read(c[i]);
lcm=c[i]/gcd(lcm,c[i])*lcm;
lcm%=k;
}
if(lcm==)cout<<"Yes"<<endl;
else cout<<"No"<<endl;
return ;
}

codeforces 688D D. Remainders Game(中国剩余定理)的更多相关文章

  1. E - Two Arithmetic Progressions(CodeForces - 710D)(拓展中国剩余定理)

    You are given two arithmetic progressions: a1k + b1 and a2l + b2. Find the number of integers x such ...

  2. Educational Codeforces Round 16 D. Two Arithmetic Progressions (不互质中国剩余定理)

    Two Arithmetic Progressions 题目链接: http://codeforces.com/contest/710/problem/D Description You are gi ...

  3. Remainders Game (中国剩余定理)

    题意:已知k和一个集合C={c1,c2,c3....cn},问是否有满足集合C的中国剩余定理的解x,使x%k的值唯一确定. 数学知识: #include<iostream> #includ ...

  4. codeforces 360 D - Remainders Game

    D - Remainders Game Description Today Pari and Arya are playing a game called Remainders. Pari choos ...

  5. ACM/ICPC 之 中国剩余定理+容斥原理(HDU5768)

    二进制枚举+容斥原理+中国剩余定理 #include<iostream> #include<cstring> #include<cstdio> #include&l ...

  6. 中国剩余定理(Chinese Remainder Theorem)

    我理解的中国剩余定理的含义是:给定一个数除以一系列互素的数${p_1}, \cdots ,{p_n}$的余数,那么这个数除以这组素数之积($N = {p_1} \times  \cdots  \tim ...

  7. 51nod1079(中国剩余定理)

    题目链接: http://www.51nod.com/onlineJudge/user.html#!userId=21687 题意: 中文题诶~ 思路: 本题就是个中国剩余定理模板题,不过模拟也可以过 ...

  8. HDU 5446 中国剩余定理+lucas

    Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

  9. poj1006生理周期(中国剩余定理)

    /* 中国剩余定理可以描述为: 若某数x分别被d1..….dn除得的余数为r1.r2.….rn,则可表示为下式: x=R1r1+R2r2+…+Rnrn+RD 其中R1是d2.d3.….dn的公倍数,而 ...

随机推荐

  1. POJ 2478 欧拉函数打表的运用

    http://poj.org/problem?id=2478 此题只是用简单的欧拉函数求每一个数的互质数的值会超时,因为要求很多数据的欧拉函数值,所以选用欧拉函数打表法. PS:因为最后得到的结果会很 ...

  2. POJ 3615 Cow Hurdles

    http://poj.org/problem?id=3615 floyd 最短路径的变形 dist[i][j]变化为 : i j之间的最大边 那么输入的时候可以直接把dist[i][j] 当作i j ...

  3. No route info of this topic

    使用rocketmq时报错 com.alibaba.rocketmq.client.exception.MQClientException: No route info of this topic, ...

  4. Linux中命令选项及参数简介

    登录Linux后,我们就可以在#或$符后面去输入命令,有的时候命令后面还会跟着“选项”(英文options)或“参数”(英文arguments).即Linux中命令格式为: command [opti ...

  5. HDU 2255 二分图最佳匹配

    奔小康赚大钱 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  6. 动态规划: HDU 1789Doing Homework again

    Problem Description Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of h ...

  7. 个人网站开发***云服务器+Linux+域名***

    作为一个改变世界的程序猿,我们不应该只会埋头写程序修bug还得会点别的, 当然如果要是自己搞个网站玩玩,既可以锻炼技术,没事也可以和圈外的朋友吹吹 牛.因为水平有限,就弄一些最基础的看看喽,不喜勿喷. ...

  8. Java 函数式接口 lambda

    import java.io.Serializable; import java.util.ArrayList; import java.util.List; public class Demo1 { ...

  9. 运行mapreduce - java.lang.InterruptedException

    错误日志: 2018-11-19 05:23:51,686 WARN [main] util.NativeCodeLoader (NativeCodeLoader.java:<clinit> ...

  10. [RxJS] `add` Inner Subscriptions to Outer Subscribers to `unsubscribe` in RxJS

    When subscribers create new "inner" sources and subscriptions, you run the risk of losing ...