题目链接:

D. Remainders Game

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Today Pari and Arya are playing a game called Remainders.

Pari chooses two positive integer x and k, and tells Arya k but not x. Arya have to find the value . There are n ancient numbers c1, c2, ..., cn and Pari has to tell Arya  if Arya wants. Given k and the ancient values, tell us if Arya has a winning strategy independent of value of x or not. Formally, is it true that Arya can understand the value  for any positive integer x?

Note, that  means the remainder of x after dividing it by y.

Input

The first line of the input contains two integers n and k (1 ≤ n,  k ≤ 1 000 000) — the number of ancient integers and value k that is chosen by Pari.

The second line contains n integers c1, c2, ..., cn (1 ≤ ci ≤ 1 000 000).

Output

Print "Yes" (without quotes) if Arya has a winning strategy independent of value of x, or "No" (without quotes) otherwise.

Examples
input
4 5
2 3 5 12
output
Yes
input
2 7
2 3
output
No

题意:

给出c1,c2,...cn,问对于任何一个正整数x,给出x%c1,x%c2,...的值x%k的值是否确定;

思路:

中国剩余定理,给个链接:传送门

AC代码:
//#include <bits/stdc++.h>
#include <vector>
#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <cstring>
#include <algorithm>
#include <cstdio> using namespace std;
#define Riep(n) for(int i=1;i<=n;i++)
#define Riop(n) for(int i=0;i<n;i++)
#define Rjep(n) for(int j=1;j<=n;j++)
#define Rjop(n) for(int j=0;j<n;j++)
#define mst(ss,b) memset(ss,b,sizeof(ss));
typedef long long LL;
template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<''||CH>'';F= CH=='-',CH=getchar());
for(num=;CH>=''&&CH<='';num=num*+CH-'',CH=getchar());
F && (num=-num);
}
int stk[], tp;
template<class T> inline void print(T p) {
if(!p) { puts(""); return; }
while(p) stk[++ tp] = p%, p/=;
while(tp) putchar(stk[tp--] + '');
putchar('\n');
} const LL mod=1e9+;
const double PI=acos(-1.0);
const LL inf=1e18;
const int N=1e6+;
const int maxn=;
const double eps=1e-; int n,k;
LL c[N];
LL gcd(LL a,LL b)
{
if(b==)return a;
return gcd(b,a%b);
}
int main()
{
read(n);read(k);
LL lcm=;
for(int i=;i<=n;i++)
{
read(c[i]);
lcm=c[i]/gcd(lcm,c[i])*lcm;
lcm%=k;
}
if(lcm==)cout<<"Yes"<<endl;
else cout<<"No"<<endl;
return ;
}

codeforces 688D D. Remainders Game(中国剩余定理)的更多相关文章

  1. E - Two Arithmetic Progressions(CodeForces - 710D)(拓展中国剩余定理)

    You are given two arithmetic progressions: a1k + b1 and a2l + b2. Find the number of integers x such ...

  2. Educational Codeforces Round 16 D. Two Arithmetic Progressions (不互质中国剩余定理)

    Two Arithmetic Progressions 题目链接: http://codeforces.com/contest/710/problem/D Description You are gi ...

  3. Remainders Game (中国剩余定理)

    题意:已知k和一个集合C={c1,c2,c3....cn},问是否有满足集合C的中国剩余定理的解x,使x%k的值唯一确定. 数学知识: #include<iostream> #includ ...

  4. codeforces 360 D - Remainders Game

    D - Remainders Game Description Today Pari and Arya are playing a game called Remainders. Pari choos ...

  5. ACM/ICPC 之 中国剩余定理+容斥原理(HDU5768)

    二进制枚举+容斥原理+中国剩余定理 #include<iostream> #include<cstring> #include<cstdio> #include&l ...

  6. 中国剩余定理(Chinese Remainder Theorem)

    我理解的中国剩余定理的含义是:给定一个数除以一系列互素的数${p_1}, \cdots ,{p_n}$的余数,那么这个数除以这组素数之积($N = {p_1} \times  \cdots  \tim ...

  7. 51nod1079(中国剩余定理)

    题目链接: http://www.51nod.com/onlineJudge/user.html#!userId=21687 题意: 中文题诶~ 思路: 本题就是个中国剩余定理模板题,不过模拟也可以过 ...

  8. HDU 5446 中国剩余定理+lucas

    Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

  9. poj1006生理周期(中国剩余定理)

    /* 中国剩余定理可以描述为: 若某数x分别被d1..….dn除得的余数为r1.r2.….rn,则可表示为下式: x=R1r1+R2r2+…+Rnrn+RD 其中R1是d2.d3.….dn的公倍数,而 ...

随机推荐

  1. JS获取所有LI中第三个<SPAN>

  2. C++中的左移、右移运算

    移位运算包含“逻辑移位”(logical shift)和“算术移位”(arithmetic shift). 逻辑移位:移出去的位丢弃,空缺位(vacant bit)用 0 填充. 算术移位:移出去的位 ...

  3. hdu 1824 2-sat问题(判断)

    /* 题意:u,v,w队长,队员,队长留下两个队员可以回家,两个队员留下,队长回家 2-sat问题,把两个队员看成一个整体就变成一个简单2-sat问题了 */ #include<stdio.h& ...

  4. cp: omitting directory解决方案

    cp: omitting directory是因为目录下面还有目录.应该使用递归方法.需要加入-r参数. 及:cp -r 该目录名.

  5. BZOJ1710: [Usaco2007 Open]Cheappal 廉价回文

    len<=2000的字符串上,给出删掉和添加每种字符的花费,求把字符串变成回文串的最小花费. 首先每个字符添加和删除是一样的,因此花费在添加和删掉每个字符的花费中取小的. 如果每个字符的花费都是 ...

  6. msp430入门编程41

    msp430中C语言的软件工程--状态机建模

  7. File类的三种构造方法

    package cn.zmh.File; import java.io.File; /* * * File类的构造方法 三种重载形式 * * */ public class FileDemo1 { p ...

  8. Scala入门到精通——第二十四节 高级类型 (三)

    作者:摆摆少年梦 视频地址:http://blog.csdn.net/wsscy2004/article/details/38440247 本节主要内容 Type Specialization Man ...

  9. LUA协程复用

    -----协程复用根函数 local function routine(fun, args) while (fun) do fun, args = coroutine.yield(fun(table. ...

  10. 鼠标放上去Div旋转特效代码

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...